Assessing the discriminative ability of risk models for more than two outcome categories

The discriminative ability of risk models for dichotomous outcomes is often evaluated with the concordance index (c-index). However, many medical prediction problems are polytomous, meaning that more than two outcome categories need to be predicted. Unfortunately such problems are often dichotomized...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of epidemiology 2012-10, Vol.27 (10), p.761-770
Hauptverfasser: Van Calster, Ben, Vergouwe, Yvonne, Looman, Caspar W. N., Van Belle, Vanya, Timmerman, Dirk, Steyerberg, Ewout W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The discriminative ability of risk models for dichotomous outcomes is often evaluated with the concordance index (c-index). However, many medical prediction problems are polytomous, meaning that more than two outcome categories need to be predicted. Unfortunately such problems are often dichotomized in prediction research. We present a perspective on the evaluation of discriminative ability of polytomous risk models, which may instigate researchers to consider polytomous prediction models more often. First, we suggest a "discrimination plot" as a tool to visualize the model's discriminative ability. Second, we discuss the use of one overall polytomous c-index versus a set of dichotomous measures to summarize the performance of the model. Third, we address several aspects to consider when constructing a polytomous c-index. These involve the assessment of concordance in pairs versus sets of patients, weighting by outcome prevalence, the value related to models with random performance, the reduction to the dichotomous c-index for dichotomous problems, and interpretation. We illustrate these issues on case studies dealing with ovarian cancer (four outcome categories) and testicular cancer (three categories). We recommend the use of a discrimination plot together with an overall c-index such as the Polytomous Discrimination Index. If the overall c-index suggests that the model has relevant discriminative ability, pairwise c-indexes for each pair of outcome categories are informative. For pairwise c-indexes we recommend the 'conditional-risk' method which is consistent with the analytical approach of the multinomial logistic regression used to develop polytomous risk models.
ISSN:0393-2990
1573-7284
DOI:10.1007/s10654-012-9733-3