Synthesis of Iron-Amino Acid Chelates and Evaluation of Their Efficacy as Iron Source and Growth Stimulator for Tomato in Nutrient Solution Culture
Supplying a sufficient amount of available iron (Fe) for plant growth in hydroponic nutrient solutions is a great challenge. The chelators commonly used to supply Fe in nutrient solutions have several disadvantages and may negatively affect plant growth. In this research study we have synthesized ce...
Gespeichert in:
Veröffentlicht in: | Journal of plant growth regulation 2012-12, Vol.31 (4), p.498-508 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Supplying a sufficient amount of available iron (Fe) for plant growth in hydroponic nutrient solutions is a great challenge. The chelators commonly used to supply Fe in nutrient solutions have several disadvantages and may negatively affect plant growth. In this research study we have synthesized certain Fe-amino acid chelates, including Fe-arginine [Fe(Arg)2], Fe-glycine [Fe(Gly)2], and Fe-histidine [Fe(His)2], and evaluated their efficacy as an Fe source for two tomato cultivars (Lycopersicon esculentum Mill. cvs. ‘Rani’ and ‘Sarika’) grown in nutrient solution. Application of Fe-amino acid chelates significantly increased root and shoot dry matter yield of both tomato cultivars compared with Fe-EDTA. Tomato plants supplied with Fe-amino acid chelates also accumulated significantly higher levels of Fe, Zn, and N in their roots and shoots compared with those supplied with Fe-EDTA. In ‘Sarika’, the effect of Fe-amino acid chelates on shoot Fe content was in the order Fe(His)2 > Fe(Gly)2 > Fe(Arg)2. In ‘Rani’, the addition of all synthesized Fe-amino acid chelates significantly increased activity of ascorbate peroxidase (APX) in comparison with Fe-EDTA, whereas in ‘Sarika’, only Fe(His)2 increased shoot APX activity. The results obtained indicated that using Fe-amino acid chelates in the nutrient solution could supply a sufficient amount of Fe for plant uptake and also improve root and shoot growth of tomato plants, although this increase was cultivar-dependent. According to the results, Fe-amino acid chelates can be used as an alternative for Fe-EDTA to supply Fe in nutrient solutions. |
---|---|
ISSN: | 0721-7595 1435-8107 |
DOI: | 10.1007/s00344-012-9259-7 |