Femtoliter Droplet Handling in Nanofluidic Channels: A Laplace Nanovalve

Analytical technologies of ultrasmall volume liquid, in particular femtoliter to attoliter liquid, is essential for single-cell and single-molecule analysis, which is becoming highly important in biology and medical diagnosis. Nanofluidic chips will be a powerful tool to realize chemical processes f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2012-12, Vol.84 (24), p.10812-10816
Hauptverfasser: Mawatari, Kazuma, Kubota, Shogo, Xu, Yan, Priest, Craig, Sedev, Rossen, Ralston, John, Kitamori, Takehiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Analytical technologies of ultrasmall volume liquid, in particular femtoliter to attoliter liquid, is essential for single-cell and single-molecule analysis, which is becoming highly important in biology and medical diagnosis. Nanofluidic chips will be a powerful tool to realize chemical processes for such a small volume sample. However, a technical challenge exists in fluidic control, which is femtoliter to attoliter liquid generation in air and handling for further chemical analysis. Integrating mechanical valves fabricated by MEMS (microelectric mechanical systems) technology into nanofluidic channels is difficult. Here, we propose a nonmechanical valve, which is a Laplace nanovalve. For this purpose, a nanopillar array was embedded in a nanochannel using a two-step electron beam lithography and dry-etching process. The nanostructure allowed precise wettability patterning with a resolution below 100 nm, which was difficult by photochemical wettability patterning due to the optical diffraction. The basic principle of the Laplace nanovalve was verified, and a 1.7 fL droplet (water in air) was successfully generated and handled for the first time.
ISSN:0003-2700
1520-6882
DOI:10.1021/ac3028905