Evaluation of lumber nerve root compression using thin-slice thickness coronal magnetic resonance imaging: three-dimensional fat-suppressed multi-shot balanced non-steady-state free precession versus threedimensional T1-weighted spoiled gradient-recalled echo
Purpose The aim of this study was to compare the three-dimensional fat-suppressed balanced non-steady-state free precession (3D FS-nSSFP) sequence and the 3D T1-weighted spoiled gradient-recalled echo (3D T1-GRE) sequence for evaluating lumbar nerve root compression with continuous thin-slice corona...
Gespeichert in:
Veröffentlicht in: | Japanese journal of radiology 2011-11, Vol.29 (9), p.623-629 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose
The aim of this study was to compare the three-dimensional fat-suppressed balanced non-steady-state free precession (3D FS-nSSFP) sequence and the 3D T1-weighted spoiled gradient-recalled echo (3D T1-GRE) sequence for evaluating lumbar nerve root compression with continuous thin-slice coronal magnetic resonance (MR) images.
Materials and methods
The institutional review board approved this study, and written informed consent was obtained from all 35 patients. We optimized continuous 2.5-mm thick lumbar coronal images with 3D FS-nSSFP and 3D T1-GRE. We calculated the contrast-to-noise ratio (CNR) for nerve roots and other structures on images with the two sequences. With knowledge of the final diagnosis, we assessed the visibility of nerve root compression on these images.
Results
The CNR values of nerve roots were significantly higher on images with 3D FS-nSSFP than on those with 3D T1-GRE. These continuous thin-slice coronal images facilitated visualization of nerve root compression in >91% of patients. There was no statistically significant difference between the two sequences in the detection of nerve root compression.
Conclusion
Continuous thin-slice coronal MR images using 3D FS-nSSFP and 3D T1-GRE sequences are sufficient to evaluate lumbar nerve root compression, and 3D FS-nSSFP is superior to 3D T1-GRE for depiction of lumbar nerve roots. |
---|---|
ISSN: | 1867-1071 1867-108X |
DOI: | 10.1007/s11604-011-0604-8 |