The Non-unique Universe
The purpose of this paper is to elucidate, by means of concepts and theorems drawn from mathematical logic, the conditions under which the existence of a multiverse is a logical necessity in mathematical physics, and the implications of Gödel’s incompleteness theorem for theories of everything. Thre...
Gespeichert in:
Veröffentlicht in: | Foundations of physics 2010-06, Vol.40 (6), p.629-637 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The purpose of this paper is to elucidate, by means of concepts and theorems drawn from mathematical logic, the conditions under which the existence of a multiverse is a logical necessity in mathematical physics, and the implications of Gödel’s incompleteness theorem for theories of everything.
Three conclusions are obtained in the final section: (i) the theory of the structure of our universe might be an undecidable theory, and this constitutes a potential epistemological limit for mathematical physics, but because such a theory must be complete, there is no
ontological
barrier to the existence of a final theory of everything; (ii) in terms of mathematical logic, there are two different types of multiverse: classes of non-isomorphic but elementarily equivalent models, and classes of model which are both non-isomorphic and elementarily inequivalent; (iii) for a hypothetical theory of everything to have only one possible model, and to thereby negate the possible existence of a multiverse, that theory must be such that it admits only a finite model. |
---|---|
ISSN: | 0015-9018 1572-9516 |
DOI: | 10.1007/s10701-010-9425-3 |