Distribution of methane in the tropical upper troposphere measured by CARIBIC and CONTRAIL aircraft
We investigate the upper tropospheric distribution of methane (CH4) at low latitudes based on the analysis of air samples collected from aboard passenger aircraft. The distribution of CH4 exhibits spatial and seasonal differences, such as the pronounced seasonal cycles over tropical Asia and elevate...
Gespeichert in:
Veröffentlicht in: | Journal of Geophysical Research: Atmospheres 2012-10, Vol.117 (D19), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the upper tropospheric distribution of methane (CH4) at low latitudes based on the analysis of air samples collected from aboard passenger aircraft. The distribution of CH4 exhibits spatial and seasonal differences, such as the pronounced seasonal cycles over tropical Asia and elevated mixing ratios over central Africa. Over Africa, the correlations of methane, ethane, and acetylene with carbon monoxide indicate that these high mixing ratios originate from biomass burning as well as from biogenic sources. Upper tropospheric mixing ratios of CH4were modeled using a chemistry transport model. The simulation captures the large‐scale features of the distributions along different flight routes, but discrepancies occur in some regions. Over Africa, where emissions are not well constrained, the model predicts a too steep interhemispheric gradient. During summer, efficient convective vertical transport and enhanced emissions give rise to a large‐scale CH4 maximum in the upper troposphere over subtropical Asia. This seasonal (monsoonal) cycle is analyzed with a tagged tracer simulation. The model confirms that in this region convection links upper tropospheric mixing ratios to regional sources on the Indian subcontinent, subtropical East Asia, and Southeast Asia. This type of aircraft data can therefore provide information about surface fluxes.
Key Points
Analysis of 6 years in situ CH4 data from CARIBIC and CONTRAIL
CH4 in the UT has a high degree of variability, spatially and seasonally
Seasonal cycles over tropical Asia are influenced by the monsoon circulation |
---|---|
ISSN: | 0148-0227 2169-897X 2156-2202 2169-8996 |
DOI: | 10.1029/2012JD018199 |