Odd-parity pairing and topological superconductivity in a strongly spin-orbit coupled semiconductor

The existence of topological superconductors preserving time-reversal symmetry was recently predicted, and they are expected to provide a solid-state realization of itinerant massless Majorana fermions and a route to topological quantum computation. Their first likely example, Cu(x)Bi(2)Se(3), was d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2012-11, Vol.109 (21), p.217004-217004, Article 217004
Hauptverfasser: Sasaki, Satoshi, Ren, Zhi, Taskin, A A, Segawa, Kouji, Fu, Liang, Ando, Yoichi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The existence of topological superconductors preserving time-reversal symmetry was recently predicted, and they are expected to provide a solid-state realization of itinerant massless Majorana fermions and a route to topological quantum computation. Their first likely example, Cu(x)Bi(2)Se(3), was discovered last year, but the search for new materials has so far been hindered by the lack of a guiding principle. Here, we report point-contact spectroscopy experiments suggesting that the low-carrier-density superconductor Sn(1-x)In(x)Te is accompanied by surface Andreev bound states which, with the help of theoretical analysis, would give evidence for odd-parity pairing and topological superconductivity. The present and previous finding of possible topological superconductivity in Sn(1-x)In(x)Te and Cu(x)Bi(2)Se(3) suggests that odd-parity pairing favored by strong spin-orbit coupling is likely to be a common underlying mechanism for materializing topological superconductivity.
ISSN:0031-9007
1079-7114
DOI:10.1103/physrevlett.109.217004