Postionization medium evolution in a laser filament: A uniquely nonplasma response
Theoretical consideration of the optical response of nascent free electrons in the process of laser filamentation reveals that the initial microscopically inhomogeneous charge distribution causes a transient electromagnetic response of the medium that differs drastically from that of a homogeneous p...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2012-10, Vol.86 (4 Pt 2), p.046408-046408, Article 046408 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Theoretical consideration of the optical response of nascent free electrons in the process of laser filamentation reveals that the initial microscopically inhomogeneous charge distribution causes a transient electromagnetic response of the medium that differs drastically from that of a homogeneous plasma with the same degree of ionization. An analytical model, describing the forced oscillations of virtually isolated and expanding electron clouds, predicts considerable enhancement of these oscillations caused by transient resonance with the laser field. The transient resonance processes should play a role in the currently accepted picture of filament formation dynamics. |
---|---|
ISSN: | 1539-3755 1550-2376 |
DOI: | 10.1103/PhysRevE.86.046408 |