Generalized Berreman's model of the elastic surface free energy of a nematic liquid crystal on a sawtoothed substrate

In this paper we present a generalization of Berreman's model for the elastic contribution to the surface free-energy density of a nematic liquid crystal in presence of a sawtooth substrate which favors homeotropic anchoring as a function of the wave number of the surface structure q, the tilt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2012-10, Vol.86 (4 Pt 1), p.041706-041706, Article 041706
Hauptverfasser: Rojas-Gómez, O A, Romero-Enrique, J M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we present a generalization of Berreman's model for the elastic contribution to the surface free-energy density of a nematic liquid crystal in presence of a sawtooth substrate which favors homeotropic anchoring as a function of the wave number of the surface structure q, the tilt angle α, and the surface anchoring strength w. In addition to the previously reported nonanalytic contribution proportional to -q ln q, due to the nucleation of disclination lines at the wedge bottoms and apexes of the substrate, the next-to-leading contribution is proportional to q for a given substrate roughness, in agreement with Berreman's predictions. We characterize this term, finding that it has two contributions: the deviations of the nematic director field with respect to a reference field corresponding to the isolated disclination lines and their associated core free energies. Comparison with the results obtained from the Landau-de Gennes model shows that our model is quite accurate in the limit wL>1, when strong anchoring conditions are effectively achieved.
ISSN:1539-3755
1550-2376
DOI:10.1103/PhysRevE.86.041706