Synthesis, properties, and reactivity of a series of non-heme {FeNO}(7/8) complexes: implications for Fe-nitroxyl coordination

The biochemical properties of nitroxyl (HNO/NO(-)) are distinct from nitric oxide (NO). Metal centers, particularly Fe, appear as suitable sites of HNO activity, both for generation and targeting. Furthermore, reduced Fe-NO(-)/Fe-HNO or {FeNO}(8) (Enemark-Feltham notation) species offer unique bondi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of inorganic biochemistry 2013-01, Vol.118, p.115-127
Hauptverfasser: Sanders, Brian C, Patra, Ashis K, Harrop, Todd C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The biochemical properties of nitroxyl (HNO/NO(-)) are distinct from nitric oxide (NO). Metal centers, particularly Fe, appear as suitable sites of HNO activity, both for generation and targeting. Furthermore, reduced Fe-NO(-)/Fe-HNO or {FeNO}(8) (Enemark-Feltham notation) species offer unique bonding profiles that are of fundamental importance. Given the unique chemical properties of {FeNO}(8) systems, we describe herein the synthesis and properties of {FeNO}(7) and {FeNO}(8) non-heme complexes containing pyrrole donors that display heme-like properties, namely [Fe(LN(4)(R))(NO)] (R = C(6)H(4) or Ph for 3; and R = 4,5-Cl(2)C(6)H(2) or PhCl for 4) and K[Fe(LN(4)(R))(NO)] (R = Ph for 5; R = PhCl for 6). X-ray crystallography establishes that the Fe-N-O angle is ~155° for 3, which is atypical for low-spin square-pyramidal {FeNO}(7) species. Both 3 and 4 display ν(NO) at ~1700 cm(-1) in the IR and reversible diffusion-controlled cyclic voltammograms (CVs) (E(1/2)=~-1.20 V vs. Fc/Fc(+) (ferrocene/ferrocenium redox couple) in MeCN) suggesting that the {FeNO}(8) compounds 5 and 6 are stable on the CV timescale. Reduction of 3 and 4 with stoichiometric KC(8) provided the {FeNO}(8) compounds 5 and 6 in near quantitative yield, which were characterized by the shift in ν(NO) to 1667 and ~1580 cm(-1), respectively. While the ν(NO) for 6 is consistent with FeNO reduction, the ν(NO) for 5 appears more indicative of ligand-based reduction. Additionally, 5 and 6 engage in HNO-like chemistry in their reactions with ferric porphyrins [Fe(III)(TPP)X] (TPP = tetraphenylporphyrin; X = Cl(-), OTf(-) (trifluoromethanesulfonate anion or CF(3)SO(3)(-))) to form [Fe(TPP)NO] in stoichiometric yield via reductive nitrosylation.
ISSN:1873-3344
DOI:10.1016/j.jinorgbio.2012.08.026