Augmenting Visual Analysis in Single-Case Research With Hierarchical Linear Modeling

The purpose of this article is to demonstrate how hierarchical linear modeling (HLM) can be used to enhance visual analysis of single-case research (SCR) designs. First, the authors demonstrated the use of growth modeling via HLM to augment visual analysis of a sophisticated single-case study. Data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Behavior modification 2013-01, Vol.37 (1), p.62-89
Hauptverfasser: Davis, Dawn H., Gagné, Phill, Fredrick, Laura D., Alberto, Paul A., Waugh, Rebecca E., Haardörfer, Regine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The purpose of this article is to demonstrate how hierarchical linear modeling (HLM) can be used to enhance visual analysis of single-case research (SCR) designs. First, the authors demonstrated the use of growth modeling via HLM to augment visual analysis of a sophisticated single-case study. Data were used from a delayed multiple baseline design, across groups of participants, with an embedded changing criterion design in a single-case literacy project for students with moderate intellectual disabilities (MoID). Visual analysis revealed a functional relation between instruction and sight-word acquisition for all students. Growth HLM quantified relations at the group level and revealed additional information that included statistically significant variability among students at initial-baseline probe and also among growth trajectories within treatment subphases. Growth HLM showed that receptive vocabulary was a significant predictor of initial knowledge of sight words, and print knowledge significantly predicted growth rates in both treatment subphases. Next, to show the benefits of combining these methodologies to examine a different behavioral topography within a more commonly used SCR design, the authors used repeated-measures HLM and visual analysis to examine simulated data within an ABAB design. Visual analysis revealed a functional relation between a hypothetical intervention (e.g., token reinforcement) and a hypothetical dependent variable (e.g., performance of a target response). HLM supported the existence of a functional relation through tests of statistical significance and detected significant variance among participants’ response to the intervention that would be impossible to identify visually. This study highlights the relevance of these procedures to the identification of evidence-based interventions.
ISSN:0145-4455
1552-4167
DOI:10.1177/0145445512453734