A Parallel Sensing Technique for Automatic Bilayer Lipid Membrane Arrays Monitoring

Ion channels are transmembrane proteins responsible of cell signaling and a large part of pharmaceutical compounds are interacting with them. In-vitro testing of ion channels is a promising technique for high throughput screening (HTS) in drug discovery and personalized medicine. Automated tests of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors & transducers 2012-03, Vol.14 (Special Issue), p.185-185
Hauptverfasser: Rossi, Michele, Thei, Federico, Tartagni, Marco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ion channels are transmembrane proteins responsible of cell signaling and a large part of pharmaceutical compounds are interacting with them. In-vitro testing of ion channels is a promising technique for high throughput screening (HTS) in drug discovery and personalized medicine. Automated tests of single ion channels embedded in artificial bilayer lipid membranes (BLM) is gaining attention over patch clamp technique due to its characteristic of performing parallel tests on selected sets of channels or multiple pharmaceutical targets. However, BLM arrays formation is a critical process based on manual and time-consuming techniques. In this paper, an automatic liquid dispensing system for BLM formation monitored in real-time by using low-noise current amplifiers is presented. As proof of this approach, concurrent formation of BLMs is shown. Additionally, single ion channel recordings on an automatically formed BLM is presented and discussed.
ISSN:1726-5479
1726-5479