Lignin oxidation mechanisms under oxygen delignification conditions. Part 2: Advanced methods for the detailed characterization of lignin oxidation mechanisms

Advanced analysis methods have been developed to follow the reactions of lignin during alkaline oxygen delignification conditions more comprehensively than before. This aim was attained by monitoring both the lignin macromolecule and the dissolved reaction products. Softwood (SW) and hardwood (HW) k...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Holzforschung 2011-06, Vol.65 (4), p.575-585
Hauptverfasser: Rovio, Stella, Kuitunen, Susanna, Ohra-aho, Taina, Alakurtti, Sami, Kalliola, Anna, Tamminen, Tarja
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Advanced analysis methods have been developed to follow the reactions of lignin during alkaline oxygen delignification conditions more comprehensively than before. This aim was attained by monitoring both the lignin macromolecule and the dissolved reaction products. Softwood (SW) and hardwood (HW) kraft spent liquor lignins were studied as substrates under various reaction conditions. The decrease in the contents of different types of free phenolic hydroxyl groups and the concurrent formation of carboxylic acids was followed by 31P NMR of the phosphitylated products. In addition, the formation of acidic degradation products with low molecular weight was determined by capillary zone electrophoresis (CE). This way, it was possible to distinguish the carboxylic acids bound to the lignin macromolecule from the cleaved reaction products, even if they partly co-precipitated during sample preparation. Peak deconvolution was applied to get information on syringyl type phenolic structures and on C(5) condensed guaiacyl structures in hardwood lignin. Pyrolysis-GC/MS was applied to provide additional information about the distribution of guaiacyl/syringyl/p-hydroxyphenyl (G/S/H) type lignin subunits, as well as changes in the phenylpropane side chain.
ISSN:0018-3830
1437-434X
DOI:10.1515/hf.2011.088