Edge-pairing isometries and counting Dirichlet domains on the densest tessellation {12g−6,3} for signal set design
In this paper we present a systematic procedure for the establishment of edge-pairing isometries in order to achieve the largest possible number (2g+1) of transformations pairing diametrically opposite edges and the angle between any two adjacent edges being equal to 2π/3 as well as a procedure for...
Gespeichert in:
Veröffentlicht in: | Journal of the Franklin Institute 2012-04, Vol.349 (3), p.1139-1152 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we present a systematic procedure for the establishment of edge-pairing isometries in order to achieve the largest possible number (2g+1) of transformations pairing diametrically opposite edges and the angle between any two adjacent edges being equal to 2π/3 as well as a procedure for counting the number of Dirichlet domains on the densest tessellation {12g−6,3} for signal set design with applications in space-time block codes [1]. |
---|---|
ISSN: | 0016-0032 1879-2693 |
DOI: | 10.1016/j.jfranklin.2012.01.004 |