A stable adaptive force/position controller for a C5 parallel robot: a neural network approach

This paper presents an adaptive force/position controller for a parallel robot executing constrained motions. This controller, based on an MLPNN (or Multi-Layer Perceptron Neural Network), does not require the inverse dynamic model of the robot to derive the control law. A neural identification of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Robotica 2012-12, Vol.30 (7), p.1177-1187
Hauptverfasser: Achili, B., Daachi, B., Amirat, Y., Ali-Cherif, A., Daâchi, M. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents an adaptive force/position controller for a parallel robot executing constrained motions. This controller, based on an MLPNN (or Multi-Layer Perceptron Neural Network), does not require the inverse dynamic model of the robot to derive the control law. A neural identification of the dynamic model of the robot is proposed to determine the principal components of the MLPNN input vector. The latter is used to compensate the dynamic effects arising from the robot–environment interaction and its parameters are adjusted according to an adaptation law based on the Lyapunov-analysis methodology. The proposed controller is evaluated experimentally on the C5 parallel robot. This method is capable of tracking accurately the force/position trajectories and its stability robustness is proved.
ISSN:0263-5747
1469-8668
DOI:10.1017/S0263574711001354