Non-uniform Deblurring for Shaken Images

Photographs taken in low-light conditions are often blurry as a result of camera shake, i.e. a motion of the camera while its shutter is open. Most existing deblurring methods model the observed blurry image as the convolution of a sharp image with a uniform blur kernel. However, we show that blur f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computer vision 2012-06, Vol.98 (2), p.168-186
Hauptverfasser: Whyte, Oliver, Sivic, Josef, Zisserman, Andrew, Ponce, Jean
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Photographs taken in low-light conditions are often blurry as a result of camera shake, i.e. a motion of the camera while its shutter is open. Most existing deblurring methods model the observed blurry image as the convolution of a sharp image with a uniform blur kernel. However, we show that blur from camera shake is in general mostly due to the 3D rotation of the camera, resulting in a blur that can be significantly non-uniform across the image. We propose a new parametrized geometric model of the blurring process in terms of the rotational motion of the camera during exposure. This model is able to capture non-uniform blur in an image due to camera shake using a single global descriptor, and can be substituted into existing deblurring algorithms with only small modifications. To demonstrate its effectiveness, we apply this model to two deblurring problems; first, the case where a single blurry image is available, for which we examine both an approximate marginalization approach and a maximum a posteriori approach, and second, the case where a sharp but noisy image of the scene is available in addition to the blurry image. We show that our approach makes it possible to model and remove a wider class of blurs than previous approaches, including uniform blur as a special case, and demonstrate its effectiveness with experiments on synthetic and real images.
ISSN:0920-5691
1573-1405
DOI:10.1007/s11263-011-0502-7