Multiscale Modeling of Transport Phenomena and Dendritic Growth in Laser Cladding Processes
A multiscale model is developed in this article to investigate the transport phenomena and dendrite growth in the diode-laser-cladding process. A transient model with an improved level-set method is built to simulate the heat/mass transport and the dynamic evolution of the molten pool surface on the...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. B, Process metallurgy and materials processing science Process metallurgy and materials processing science, 2011-12, Vol.42 (6), p.1306-1318 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A multiscale model is developed in this article to investigate the transport phenomena and dendrite growth in the diode-laser-cladding process. A transient model with an improved level-set method is built to simulate the heat/mass transport and the dynamic evolution of the molten pool surface on the macroscale. A novel model integrating the cellular automata (CA) and phase field (PF) methods is used to simulate the dendritic growth of multicomponent alloys in the mushy zone. The multiscale model is validated against the experiments, and the predicted geometry of clad tracks and the predicted dendrite arm spacing of microstructure match reasonably well with the experimental results. The effects of the processing parameters on the track geometry and microstructure are also investigated. |
---|---|
ISSN: | 1073-5615 1543-1916 |
DOI: | 10.1007/s11663-011-9545-y |