mutation in the E2 subunit of the mitochondrial pyruvate dehydrogenase complex in Arabidopsis reduces plant organ size and enhances the accumulation of amino acids and intermediate products of the TCA Cycle

The mitochondrial pyruvate dehydrogenase complex (mtPDC) plays a pivotal role in controlling the entry of carbon into the tricarboxylic acid (TCA) cycle for energy production. This multi-enzyme complex consists of three components: E1, E2, and E3. In Arabidopsis, there are three genes, mtE2-1, mtE2-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Planta 2012-08, Vol.236 (2), p.387-399
Hauptverfasser: Yu, Hailan, Du, Xiaoqiu, Zhang, Fengxia, Zhang, Fang, Hu, Yong, Liu, Shichang, Jiang, Xiangning, Wang, Guodong, Liu, Dong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The mitochondrial pyruvate dehydrogenase complex (mtPDC) plays a pivotal role in controlling the entry of carbon into the tricarboxylic acid (TCA) cycle for energy production. This multi-enzyme complex consists of three components: E1, E2, and E3. In Arabidopsis, there are three genes, mtE2-1, mtE2-2, and mtE2-3, which encode the putative mtPDC E2 subunit but how each of them contributes to the total mtPDC activity remains unknown. In this work, we characterized an Arabidopsis mutant, m132, that has abnormal small organs. Molecular cloning indicated that the phenotype of m132 is caused by a mutation in the mtE2-1 gene, which results in a truncation of 109 amino acids at the C-terminus of the encoded protein. In m132, mtPDC activity is only 30% of the WT and ATP production is severely impaired. The mutation in the mtE2-1 gene also leads to the over-accumulation of most intermediate products of the TCA cycle and of all the amino acids for protein synthesis. Our results suggest that, among the three mtE2 genes, mtE2-1 is a major contributor to the function of Arabidopsis mtPDC and that the functional disruption of mtE2-1 profoundly affects plant growth and development, as well as its metabolism.
ISSN:0032-0935
1432-2048
DOI:10.1007/s00425-012-1620-3