Pulsed rotating supersonic source for merged molecular beams

We describe a pulsed rotating supersonic beam source, evolved from an ancestral device [M. Gupta and D. Herschbach, J. Phys. Chem. A 105, 1626 (2001)]. The beam emerges from a nozzle near the tip of a hollow rotor which can be spun at high-speed to shift the molecular velocity distribution downward...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2012-06, Vol.83 (6), p.064102-064102
Hauptverfasser: Sheffield, L, Hickey, M S, Krasovitskiy, V, Rathnayaka, K D D, Lyuksyutov, I F, Herschbach, D R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe a pulsed rotating supersonic beam source, evolved from an ancestral device [M. Gupta and D. Herschbach, J. Phys. Chem. A 105, 1626 (2001)]. The beam emerges from a nozzle near the tip of a hollow rotor which can be spun at high-speed to shift the molecular velocity distribution downward or upward over a wide range. Here we consider mostly the slowing mode. Introducing a pulsed gas inlet system, cryocooling, and a shutter gate eliminated the main handicap of the original device in which continuous gas flow imposed high background pressure. The new version provides intense pulses, of duration 0.1-0.6 ms (depending on rotor speed) and containing ∼10(12) molecules at lab speeds as low as 35 m/s and ∼10(15) molecules at 400 m∕s. Beams of any molecule available as a gas can be slowed (or speeded); e.g., we have produced slow and fast beams of rare gases, O(2), Cl(2), NO(2), NH(3), and SF(6). For collision experiments, the ability to scan the beam speed by merely adjusting the rotor is especially advantageous when using two merged beams. By closely matching the beam speeds, very low relative collision energies can be attained without making either beam very slow.
ISSN:0034-6748
1089-7623
DOI:10.1063/1.4727883