The distribution of TPX2 in dividing leaf cells of the fern Asplenium nidus

Plant cell division requires the dynamic organisation of several microtubule arrays. The mechanisms of regulation of the above arrays are under rigorous research. Among several factors that are involved in plant microtubule dynamics, the Targeting Protein for Xklp2 (TPX2) has been found to play a ro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant biology (Stuttgart, Germany) Germany), 2013-01, Vol.15 (1), p.203-209
Hauptverfasser: Panteris, E., Adamakis, I.-D. S., Chanoumidou, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Plant cell division requires the dynamic organisation of several microtubule arrays. The mechanisms of regulation of the above arrays are under rigorous research. Among several factors that are involved in plant microtubule dynamics, the Targeting Protein for Xklp2 (TPX2) has been found to play a role in spindle organisation, in combination with Aurora kinases, in dividing cells of angiosperms. Microtubule organisation in dividing cells of ferns exhibits certain peculiarities. Accordingly, the presence and distribution of a TPX2 homologue might be helpful in understanding the patterns and regulatory mechanisms of microtubule arrays in this plant group. In this study, a putative TPX2 homologue was identified using Western blotting in the fern Asplenium nidus. It was found, using immunostaining and CLSM, that it is co-localised with perinuclear preprophase microtubules and the prophase spindle, and follows the microtubule pattern during metaphase/anaphase and telophase. During cytokinesis, while in angiosperms TPX2 is degraded, in A. nidus the TPX2 signal persists, co-localising with the phragmoplast. In early post-cytokinetic cells, a TPX2 signal is present on the nuclear surface facing the daughter cell wall and, thereafter it is co-localised with the fern-specific microtubule aggregation that lines the new wall, which is possibly involved in cortical microtubule assembly.
ISSN:1435-8603
1438-8677
DOI:10.1111/j.1438-8677.2012.00615.x