Comparison of higher-order mode suppression and Q-switched laser performance in thulium-doped large mode area and photonic crystal fibers
We report the influence of higher order modes (HOMs) in large mode fibers operation in Q-switched oscillator configurations at ~2 μm wavelength. S(2) measurements confirm guiding of LP(11) and LP(02) fiber modes in a large mode area (LMA) step-index fiber, whereas a prototype photonic crystal fiber...
Gespeichert in:
Veröffentlicht in: | Optics express 2012-10, Vol.20 (22), p.24295-24303 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report the influence of higher order modes (HOMs) in large mode fibers operation in Q-switched oscillator configurations at ~2 μm wavelength. S(2) measurements confirm guiding of LP(11) and LP(02) fiber modes in a large mode area (LMA) step-index fiber, whereas a prototype photonic crystal fiber (PCF) provides nearly single-mode performance with a small portion of light in the LP(11) mode. The difference in HOM content leads to a significant difference in Q-switched oscillator performance. In the step-index fiber, the percentage of cladding light increases by 20% to >40% with increasing pulse energy to ~250 µJ. We accredit this degradation to saturation of the gain in the fundamental mode leading to more light generated in the HOMs, which is eventually converted into cladding light. No such degradation is seen in PCF laser system for >400 µJ energies. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.20.024295 |