Fabrication of nanobeads from nanocups by controlling scission/crosslinking in organic polymer materials

The development of several kinds of micro/nanofabrication techniques has resulted in many innovations in the micro/nanodevices that support today's science and technology. With feature miniaturization, the fabrication tools have shifted from light to ionizing radiation. Here, we propose a simpl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2012-12, Vol.23 (49), p.495307-495307
Hauptverfasser: Oyama, Tomoko Gowa, Oshima, Akihiro, Washio, Masakazu, Tagawa, Seiichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The development of several kinds of micro/nanofabrication techniques has resulted in many innovations in the micro/nanodevices that support today's science and technology. With feature miniaturization, the fabrication tools have shifted from light to ionizing radiation. Here, we propose a simple micro/nanofabrication technique for organic materials using a scanning beam (SB) of ionizing radiation. By controlling the scission/crosslinking of the material via three-dimensional energy-deposition distribution of the SB, appropriate solvents can easily peel off only the crosslinked region from the bulk material. The technique was demonstrated using a focused ion beam and a chlorinated organic polymer. The polymer underwent main-chain scission upon irradiation, but it crosslinked after high-dose irradiation. Appropriate solvents could easily peel off only the crosslinked region from the bulk material. The technique, 'nanobead from nanocup', enabled the production of desired structures such as nanowires and nanomembranes. It can be also applied to the micro/nanofabrication of functional materials.
ISSN:0957-4484
1361-6528
DOI:10.1088/0957-4484/23/49/495307