Bootstrapping realized multivariate volatility measures

We propose a bootstrap method for statistics that are a function of multivariate high frequency returns such as realized regression, covariance and correlation coefficients. We show that the finite sample performance of the bootstrap is superior to the existing first-order asymptotic theory. Neverth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of econometrics 2013-01, Vol.172 (1), p.49-65
Hauptverfasser: Dovonon, Prosper, Gonçalves, Sílvia, Meddahi, Nour
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a bootstrap method for statistics that are a function of multivariate high frequency returns such as realized regression, covariance and correlation coefficients. We show that the finite sample performance of the bootstrap is superior to the existing first-order asymptotic theory. Nevertheless, and contrary to the existing results in the bootstrap literature for regression models subject to error heteroskedasticity, the Edgeworth expansion for the pairs bootstrap that we develop here shows that this method is not second-order accurate. We argue that this is due to the fact that the conditional mean parameters of realized regression models are heterogeneous under stochastic volatility.
ISSN:0304-4076
1872-6895
DOI:10.1016/j.jeconom.2012.08.003