A bias-corrected covariance estimate for improved inference with quadratic inference functions

The method of quadratic inference functions (QIF) is an increasingly popular method for the analysis of correlated data because of its multiple advantages over generalized estimating equations (GEE). One advantage is that it is more efficient for parameter estimation when the working covariance stru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics in medicine 2012-12, Vol.31 (29), p.4003-4022
1. Verfasser: Westgate, Philip M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The method of quadratic inference functions (QIF) is an increasingly popular method for the analysis of correlated data because of its multiple advantages over generalized estimating equations (GEE). One advantage is that it is more efficient for parameter estimation when the working covariance structure for the data is misspecified. In the QIF literature, the asymptotic covariance formula is used to obtain standard errors. We show that in small to moderately sized samples, these standard error estimates can be severely biased downward, therefore inflating test size and decreasing coverage probability. We propose adjustments to the asymptotic covariance formula that eliminate finite‐sample biases and, as shown via simulation, lead to substantial improvements in standard error estimates, inference, and coverage. The proposed method is illustrated in application to a cluster randomized trial and a longitudinal study. Furthermore, QIF and GEE are contrasted via simulation and these applications. Copyright © 2012 John Wiley & Sons, Ltd.
ISSN:0277-6715
1097-0258
DOI:10.1002/sim.5479