High Curie temperature Bi(1.85)Mn(0.15)Te3 nanoplates

Bi(1.85)Mn(0.15)Te(3) hexagonal nanoplates with a width of ~200 nm and a thickness of ~20 nm were synthesized using a solvothermal method. According to the structural characterization and compositional analysis, the Mn(2+) and Mn(3+) ions were found to substitute Bi(3+) ions in the lattice. High-lev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2012-11, Vol.134 (46), p.18920-18923
Hauptverfasser: Cheng, Lina, Chen, Zhi-Gang, Ma, Song, Zhang, Zhi-dong, Wang, Yong, Xu, Hong-Yi, Yang, Lei, Han, Guang, Jack, Kevin, Lu, Gaoqing Max, Zou, Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18923
container_issue 46
container_start_page 18920
container_title Journal of the American Chemical Society
container_volume 134
creator Cheng, Lina
Chen, Zhi-Gang
Ma, Song
Zhang, Zhi-dong
Wang, Yong
Xu, Hong-Yi
Yang, Lei
Han, Guang
Jack, Kevin
Lu, Gaoqing Max
Zou, Jin
description Bi(1.85)Mn(0.15)Te(3) hexagonal nanoplates with a width of ~200 nm and a thickness of ~20 nm were synthesized using a solvothermal method. According to the structural characterization and compositional analysis, the Mn(2+) and Mn(3+) ions were found to substitute Bi(3+) ions in the lattice. High-level Mn doping induces significant lattice distortion and decreases the crystal lattice by 1.07% in the a axis and 3.18% in the c axis. A high ferromagnetic state with a Curie temperature of ~45 K is observed in these nanoplates due to Mn(2+) and Mn(3+) ion doping, which is a significant progress in the field of electronics and spintronics.
doi_str_mv 10.1021/ja308933k
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1186928786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1186928786</sourcerecordid><originalsourceid>FETCH-LOGICAL-p565-6d8f2fcde8aff7d66b59ffcd77b7a54de64673410d2be71b86336bc4b5a2204b3</originalsourceid><addsrcrecordid>eNo1jz1PwzAYhC0kREtg4A-gjOmQ4m87I0SFIhWxZI_s-DWkJGmwk4F_TyTKdLrT3SMdQncEbwmm5OFoGNYFY18XaE0ExbkgVK7QdYxHjDGnmlyhFWVLKLhYI7FvPz7Tcg4tpBP0IwQzzQHSpzYjWy02b0O2gMWmApYOZjiNnZkg3qBLb7oIt2dNUPW8q8p9fnh_eS0fD_kopMil0576xoE23isnpRWFX7xSVhnBHUguFeMEO2pBEaslY9I23ApDKeaWJSj7w47h9D1DnOq-jQ10nRngNMeaEC0LqtUyTND9uTrbHlw9hrY34af-f8p-AVwYT4o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1186928786</pqid></control><display><type>article</type><title>High Curie temperature Bi(1.85)Mn(0.15)Te3 nanoplates</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Cheng, Lina ; Chen, Zhi-Gang ; Ma, Song ; Zhang, Zhi-dong ; Wang, Yong ; Xu, Hong-Yi ; Yang, Lei ; Han, Guang ; Jack, Kevin ; Lu, Gaoqing Max ; Zou, Jin</creator><creatorcontrib>Cheng, Lina ; Chen, Zhi-Gang ; Ma, Song ; Zhang, Zhi-dong ; Wang, Yong ; Xu, Hong-Yi ; Yang, Lei ; Han, Guang ; Jack, Kevin ; Lu, Gaoqing Max ; Zou, Jin</creatorcontrib><description>Bi(1.85)Mn(0.15)Te(3) hexagonal nanoplates with a width of ~200 nm and a thickness of ~20 nm were synthesized using a solvothermal method. According to the structural characterization and compositional analysis, the Mn(2+) and Mn(3+) ions were found to substitute Bi(3+) ions in the lattice. High-level Mn doping induces significant lattice distortion and decreases the crystal lattice by 1.07% in the a axis and 3.18% in the c axis. A high ferromagnetic state with a Curie temperature of ~45 K is observed in these nanoplates due to Mn(2+) and Mn(3+) ion doping, which is a significant progress in the field of electronics and spintronics.</description><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja308933k</identifier><identifier>PMID: 23126545</identifier><language>eng</language><publisher>United States</publisher><subject>Bismuth - chemistry ; Hot Temperature ; Manganese - chemistry ; Microscopy, Electron, Scanning ; Microscopy, Electron, Transmission ; Nanostructures ; Tellurium - chemistry ; X-Ray Diffraction</subject><ispartof>Journal of the American Chemical Society, 2012-11, Vol.134 (46), p.18920-18923</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23126545$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, Lina</creatorcontrib><creatorcontrib>Chen, Zhi-Gang</creatorcontrib><creatorcontrib>Ma, Song</creatorcontrib><creatorcontrib>Zhang, Zhi-dong</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><creatorcontrib>Xu, Hong-Yi</creatorcontrib><creatorcontrib>Yang, Lei</creatorcontrib><creatorcontrib>Han, Guang</creatorcontrib><creatorcontrib>Jack, Kevin</creatorcontrib><creatorcontrib>Lu, Gaoqing Max</creatorcontrib><creatorcontrib>Zou, Jin</creatorcontrib><title>High Curie temperature Bi(1.85)Mn(0.15)Te3 nanoplates</title><title>Journal of the American Chemical Society</title><addtitle>J Am Chem Soc</addtitle><description>Bi(1.85)Mn(0.15)Te(3) hexagonal nanoplates with a width of ~200 nm and a thickness of ~20 nm were synthesized using a solvothermal method. According to the structural characterization and compositional analysis, the Mn(2+) and Mn(3+) ions were found to substitute Bi(3+) ions in the lattice. High-level Mn doping induces significant lattice distortion and decreases the crystal lattice by 1.07% in the a axis and 3.18% in the c axis. A high ferromagnetic state with a Curie temperature of ~45 K is observed in these nanoplates due to Mn(2+) and Mn(3+) ion doping, which is a significant progress in the field of electronics and spintronics.</description><subject>Bismuth - chemistry</subject><subject>Hot Temperature</subject><subject>Manganese - chemistry</subject><subject>Microscopy, Electron, Scanning</subject><subject>Microscopy, Electron, Transmission</subject><subject>Nanostructures</subject><subject>Tellurium - chemistry</subject><subject>X-Ray Diffraction</subject><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo1jz1PwzAYhC0kREtg4A-gjOmQ4m87I0SFIhWxZI_s-DWkJGmwk4F_TyTKdLrT3SMdQncEbwmm5OFoGNYFY18XaE0ExbkgVK7QdYxHjDGnmlyhFWVLKLhYI7FvPz7Tcg4tpBP0IwQzzQHSpzYjWy02b0O2gMWmApYOZjiNnZkg3qBLb7oIt2dNUPW8q8p9fnh_eS0fD_kopMil0576xoE23isnpRWFX7xSVhnBHUguFeMEO2pBEaslY9I23ApDKeaWJSj7w47h9D1DnOq-jQ10nRngNMeaEC0LqtUyTND9uTrbHlw9hrY34af-f8p-AVwYT4o</recordid><startdate>20121121</startdate><enddate>20121121</enddate><creator>Cheng, Lina</creator><creator>Chen, Zhi-Gang</creator><creator>Ma, Song</creator><creator>Zhang, Zhi-dong</creator><creator>Wang, Yong</creator><creator>Xu, Hong-Yi</creator><creator>Yang, Lei</creator><creator>Han, Guang</creator><creator>Jack, Kevin</creator><creator>Lu, Gaoqing Max</creator><creator>Zou, Jin</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20121121</creationdate><title>High Curie temperature Bi(1.85)Mn(0.15)Te3 nanoplates</title><author>Cheng, Lina ; Chen, Zhi-Gang ; Ma, Song ; Zhang, Zhi-dong ; Wang, Yong ; Xu, Hong-Yi ; Yang, Lei ; Han, Guang ; Jack, Kevin ; Lu, Gaoqing Max ; Zou, Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p565-6d8f2fcde8aff7d66b59ffcd77b7a54de64673410d2be71b86336bc4b5a2204b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bismuth - chemistry</topic><topic>Hot Temperature</topic><topic>Manganese - chemistry</topic><topic>Microscopy, Electron, Scanning</topic><topic>Microscopy, Electron, Transmission</topic><topic>Nanostructures</topic><topic>Tellurium - chemistry</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Lina</creatorcontrib><creatorcontrib>Chen, Zhi-Gang</creatorcontrib><creatorcontrib>Ma, Song</creatorcontrib><creatorcontrib>Zhang, Zhi-dong</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><creatorcontrib>Xu, Hong-Yi</creatorcontrib><creatorcontrib>Yang, Lei</creatorcontrib><creatorcontrib>Han, Guang</creatorcontrib><creatorcontrib>Jack, Kevin</creatorcontrib><creatorcontrib>Lu, Gaoqing Max</creatorcontrib><creatorcontrib>Zou, Jin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Lina</au><au>Chen, Zhi-Gang</au><au>Ma, Song</au><au>Zhang, Zhi-dong</au><au>Wang, Yong</au><au>Xu, Hong-Yi</au><au>Yang, Lei</au><au>Han, Guang</au><au>Jack, Kevin</au><au>Lu, Gaoqing Max</au><au>Zou, Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Curie temperature Bi(1.85)Mn(0.15)Te3 nanoplates</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J Am Chem Soc</addtitle><date>2012-11-21</date><risdate>2012</risdate><volume>134</volume><issue>46</issue><spage>18920</spage><epage>18923</epage><pages>18920-18923</pages><eissn>1520-5126</eissn><abstract>Bi(1.85)Mn(0.15)Te(3) hexagonal nanoplates with a width of ~200 nm and a thickness of ~20 nm were synthesized using a solvothermal method. According to the structural characterization and compositional analysis, the Mn(2+) and Mn(3+) ions were found to substitute Bi(3+) ions in the lattice. High-level Mn doping induces significant lattice distortion and decreases the crystal lattice by 1.07% in the a axis and 3.18% in the c axis. A high ferromagnetic state with a Curie temperature of ~45 K is observed in these nanoplates due to Mn(2+) and Mn(3+) ion doping, which is a significant progress in the field of electronics and spintronics.</abstract><cop>United States</cop><pmid>23126545</pmid><doi>10.1021/ja308933k</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier EISSN: 1520-5126
ispartof Journal of the American Chemical Society, 2012-11, Vol.134 (46), p.18920-18923
issn 1520-5126
language eng
recordid cdi_proquest_miscellaneous_1186928786
source MEDLINE; American Chemical Society Journals
subjects Bismuth - chemistry
Hot Temperature
Manganese - chemistry
Microscopy, Electron, Scanning
Microscopy, Electron, Transmission
Nanostructures
Tellurium - chemistry
X-Ray Diffraction
title High Curie temperature Bi(1.85)Mn(0.15)Te3 nanoplates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T17%3A51%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Curie%20temperature%20Bi(1.85)Mn(0.15)Te3%20nanoplates&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Cheng,%20Lina&rft.date=2012-11-21&rft.volume=134&rft.issue=46&rft.spage=18920&rft.epage=18923&rft.pages=18920-18923&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja308933k&rft_dat=%3Cproquest_pubme%3E1186928786%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1186928786&rft_id=info:pmid/23126545&rfr_iscdi=true