High Curie temperature Bi(1.85)Mn(0.15)Te3 nanoplates

Bi(1.85)Mn(0.15)Te(3) hexagonal nanoplates with a width of ~200 nm and a thickness of ~20 nm were synthesized using a solvothermal method. According to the structural characterization and compositional analysis, the Mn(2+) and Mn(3+) ions were found to substitute Bi(3+) ions in the lattice. High-lev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2012-11, Vol.134 (46), p.18920-18923
Hauptverfasser: Cheng, Lina, Chen, Zhi-Gang, Ma, Song, Zhang, Zhi-dong, Wang, Yong, Xu, Hong-Yi, Yang, Lei, Han, Guang, Jack, Kevin, Lu, Gaoqing Max, Zou, Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bi(1.85)Mn(0.15)Te(3) hexagonal nanoplates with a width of ~200 nm and a thickness of ~20 nm were synthesized using a solvothermal method. According to the structural characterization and compositional analysis, the Mn(2+) and Mn(3+) ions were found to substitute Bi(3+) ions in the lattice. High-level Mn doping induces significant lattice distortion and decreases the crystal lattice by 1.07% in the a axis and 3.18% in the c axis. A high ferromagnetic state with a Curie temperature of ~45 K is observed in these nanoplates due to Mn(2+) and Mn(3+) ion doping, which is a significant progress in the field of electronics and spintronics.
ISSN:1520-5126
DOI:10.1021/ja308933k