Non-Gaussianity in single-particle tracking: use of kurtosis to learn the characteristics of a cage-type potential

Nonlinear interaction of membrane proteins with cytoskeleton and membrane leads to non-Gaussian structure of their displacement probability distribution. We propose a statistical analysis technique for learning the characteristics of the nonlinear potential from the time dependence of the cumulants...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2012-05, Vol.85 (5 Pt 1), p.051905-051905, Article 051905
Hauptverfasser: Lushnikov, Pavel M, Sulc, Petr, Turitsyn, Konstantin S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 051905
container_issue 5 Pt 1
container_start_page 051905
container_title Physical review. E, Statistical, nonlinear, and soft matter physics
container_volume 85
creator Lushnikov, Pavel M
Sulc, Petr
Turitsyn, Konstantin S
description Nonlinear interaction of membrane proteins with cytoskeleton and membrane leads to non-Gaussian structure of their displacement probability distribution. We propose a statistical analysis technique for learning the characteristics of the nonlinear potential from the time dependence of the cumulants of the displacement distribution. The efficiency of the approach is demonstrated on the analysis of the kurtosis of the displacement distribution of the particle traveling on a membrane in a cage-type potential. Results of numerical simulations are supported by analytical predictions. We show that the approach allows robust identification of some characteristics of the potential for the much lower temporal resolution compared with the mean-square displacement analysis and we demonstrate robustness to experimental errors in determining the particle positions.
doi_str_mv 10.1103/physreve.85.051905
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1186916934</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1186916934</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-dcf0ab64b1b281421cfb156fa8afac4d035be524c7e657bf77dd5bb50b35d6883</originalsourceid><addsrcrecordid>eNo9kLFOwzAURS0EoqXwAwzII0uKHduJw4aqUpAQIARzZDsvrWkaB9up1L8nVQvTu3o69w4HoWtKppQSdtetdsHDFqZSTImgBREnaEyFIEnK8ux0n1mRsFyIEboI4ZsQljLJz9EoZYTwXGZj5F9dmyxUH4JVrY07bFscbLtsIOmUj9Y0gKNXZj387nEfALsar3sfXbABR4cbUL7FcQXYrNQARvA2DL2wBxU2aglJ3HWAOxehjVY1l-isVk2Aq-OdoK_H-efsKXl5WzzPHl4SwymLSWVqonTGNdWppDylptZUZLWSqlaGV4QJDSLlJodM5LrO86oSWguimagyKdkE3R52O-9-egix3NhgoGlUC64PJaUyK2hWMD6g6QE13oXBaV123m6U35WUlHvX5fvg-gO281KK8uB6KN0c93u9geq_8ieX_QLSo38I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1186916934</pqid></control><display><type>article</type><title>Non-Gaussianity in single-particle tracking: use of kurtosis to learn the characteristics of a cage-type potential</title><source>MEDLINE</source><source>American Physical Society Journals</source><creator>Lushnikov, Pavel M ; Sulc, Petr ; Turitsyn, Konstantin S</creator><creatorcontrib>Lushnikov, Pavel M ; Sulc, Petr ; Turitsyn, Konstantin S</creatorcontrib><description>Nonlinear interaction of membrane proteins with cytoskeleton and membrane leads to non-Gaussian structure of their displacement probability distribution. We propose a statistical analysis technique for learning the characteristics of the nonlinear potential from the time dependence of the cumulants of the displacement distribution. The efficiency of the approach is demonstrated on the analysis of the kurtosis of the displacement distribution of the particle traveling on a membrane in a cage-type potential. Results of numerical simulations are supported by analytical predictions. We show that the approach allows robust identification of some characteristics of the potential for the much lower temporal resolution compared with the mean-square displacement analysis and we demonstrate robustness to experimental errors in determining the particle positions.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/physreve.85.051905</identifier><identifier>PMID: 23004786</identifier><language>eng</language><publisher>United States</publisher><subject>Diffusion ; Membrane Potentials ; Membrane Proteins - metabolism ; Normal Distribution ; Probability ; Statistical Distributions ; Time Factors</subject><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2012-05, Vol.85 (5 Pt 1), p.051905-051905, Article 051905</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-dcf0ab64b1b281421cfb156fa8afac4d035be524c7e657bf77dd5bb50b35d6883</citedby><cites>FETCH-LOGICAL-c413t-dcf0ab64b1b281421cfb156fa8afac4d035be524c7e657bf77dd5bb50b35d6883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23004786$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lushnikov, Pavel M</creatorcontrib><creatorcontrib>Sulc, Petr</creatorcontrib><creatorcontrib>Turitsyn, Konstantin S</creatorcontrib><title>Non-Gaussianity in single-particle tracking: use of kurtosis to learn the characteristics of a cage-type potential</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>Nonlinear interaction of membrane proteins with cytoskeleton and membrane leads to non-Gaussian structure of their displacement probability distribution. We propose a statistical analysis technique for learning the characteristics of the nonlinear potential from the time dependence of the cumulants of the displacement distribution. The efficiency of the approach is demonstrated on the analysis of the kurtosis of the displacement distribution of the particle traveling on a membrane in a cage-type potential. Results of numerical simulations are supported by analytical predictions. We show that the approach allows robust identification of some characteristics of the potential for the much lower temporal resolution compared with the mean-square displacement analysis and we demonstrate robustness to experimental errors in determining the particle positions.</description><subject>Diffusion</subject><subject>Membrane Potentials</subject><subject>Membrane Proteins - metabolism</subject><subject>Normal Distribution</subject><subject>Probability</subject><subject>Statistical Distributions</subject><subject>Time Factors</subject><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kLFOwzAURS0EoqXwAwzII0uKHduJw4aqUpAQIARzZDsvrWkaB9up1L8nVQvTu3o69w4HoWtKppQSdtetdsHDFqZSTImgBREnaEyFIEnK8ux0n1mRsFyIEboI4ZsQljLJz9EoZYTwXGZj5F9dmyxUH4JVrY07bFscbLtsIOmUj9Y0gKNXZj387nEfALsar3sfXbABR4cbUL7FcQXYrNQARvA2DL2wBxU2aglJ3HWAOxehjVY1l-isVk2Aq-OdoK_H-efsKXl5WzzPHl4SwymLSWVqonTGNdWppDylptZUZLWSqlaGV4QJDSLlJodM5LrO86oSWguimagyKdkE3R52O-9-egix3NhgoGlUC64PJaUyK2hWMD6g6QE13oXBaV123m6U35WUlHvX5fvg-gO281KK8uB6KN0c93u9geq_8ieX_QLSo38I</recordid><startdate>20120514</startdate><enddate>20120514</enddate><creator>Lushnikov, Pavel M</creator><creator>Sulc, Petr</creator><creator>Turitsyn, Konstantin S</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120514</creationdate><title>Non-Gaussianity in single-particle tracking: use of kurtosis to learn the characteristics of a cage-type potential</title><author>Lushnikov, Pavel M ; Sulc, Petr ; Turitsyn, Konstantin S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-dcf0ab64b1b281421cfb156fa8afac4d035be524c7e657bf77dd5bb50b35d6883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Diffusion</topic><topic>Membrane Potentials</topic><topic>Membrane Proteins - metabolism</topic><topic>Normal Distribution</topic><topic>Probability</topic><topic>Statistical Distributions</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lushnikov, Pavel M</creatorcontrib><creatorcontrib>Sulc, Petr</creatorcontrib><creatorcontrib>Turitsyn, Konstantin S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lushnikov, Pavel M</au><au>Sulc, Petr</au><au>Turitsyn, Konstantin S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-Gaussianity in single-particle tracking: use of kurtosis to learn the characteristics of a cage-type potential</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2012-05-14</date><risdate>2012</risdate><volume>85</volume><issue>5 Pt 1</issue><spage>051905</spage><epage>051905</epage><pages>051905-051905</pages><artnum>051905</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>Nonlinear interaction of membrane proteins with cytoskeleton and membrane leads to non-Gaussian structure of their displacement probability distribution. We propose a statistical analysis technique for learning the characteristics of the nonlinear potential from the time dependence of the cumulants of the displacement distribution. The efficiency of the approach is demonstrated on the analysis of the kurtosis of the displacement distribution of the particle traveling on a membrane in a cage-type potential. Results of numerical simulations are supported by analytical predictions. We show that the approach allows robust identification of some characteristics of the potential for the much lower temporal resolution compared with the mean-square displacement analysis and we demonstrate robustness to experimental errors in determining the particle positions.</abstract><cop>United States</cop><pmid>23004786</pmid><doi>10.1103/physreve.85.051905</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical, nonlinear, and soft matter physics, 2012-05, Vol.85 (5 Pt 1), p.051905-051905, Article 051905
issn 1539-3755
1550-2376
language eng
recordid cdi_proquest_miscellaneous_1186916934
source MEDLINE; American Physical Society Journals
subjects Diffusion
Membrane Potentials
Membrane Proteins - metabolism
Normal Distribution
Probability
Statistical Distributions
Time Factors
title Non-Gaussianity in single-particle tracking: use of kurtosis to learn the characteristics of a cage-type potential
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T12%3A42%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-Gaussianity%20in%20single-particle%20tracking:%20use%20of%20kurtosis%20to%20learn%20the%20characteristics%20of%20a%20cage-type%20potential&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Lushnikov,%20Pavel%20M&rft.date=2012-05-14&rft.volume=85&rft.issue=5%20Pt%201&rft.spage=051905&rft.epage=051905&rft.pages=051905-051905&rft.artnum=051905&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/physreve.85.051905&rft_dat=%3Cproquest_cross%3E1186916934%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1186916934&rft_id=info:pmid/23004786&rfr_iscdi=true