Non-Gaussianity in single-particle tracking: use of kurtosis to learn the characteristics of a cage-type potential
Nonlinear interaction of membrane proteins with cytoskeleton and membrane leads to non-Gaussian structure of their displacement probability distribution. We propose a statistical analysis technique for learning the characteristics of the nonlinear potential from the time dependence of the cumulants...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2012-05, Vol.85 (5 Pt 1), p.051905-051905, Article 051905 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 051905 |
---|---|
container_issue | 5 Pt 1 |
container_start_page | 051905 |
container_title | Physical review. E, Statistical, nonlinear, and soft matter physics |
container_volume | 85 |
creator | Lushnikov, Pavel M Sulc, Petr Turitsyn, Konstantin S |
description | Nonlinear interaction of membrane proteins with cytoskeleton and membrane leads to non-Gaussian structure of their displacement probability distribution. We propose a statistical analysis technique for learning the characteristics of the nonlinear potential from the time dependence of the cumulants of the displacement distribution. The efficiency of the approach is demonstrated on the analysis of the kurtosis of the displacement distribution of the particle traveling on a membrane in a cage-type potential. Results of numerical simulations are supported by analytical predictions. We show that the approach allows robust identification of some characteristics of the potential for the much lower temporal resolution compared with the mean-square displacement analysis and we demonstrate robustness to experimental errors in determining the particle positions. |
doi_str_mv | 10.1103/physreve.85.051905 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1186916934</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1186916934</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-dcf0ab64b1b281421cfb156fa8afac4d035be524c7e657bf77dd5bb50b35d6883</originalsourceid><addsrcrecordid>eNo9kLFOwzAURS0EoqXwAwzII0uKHduJw4aqUpAQIARzZDsvrWkaB9up1L8nVQvTu3o69w4HoWtKppQSdtetdsHDFqZSTImgBREnaEyFIEnK8ux0n1mRsFyIEboI4ZsQljLJz9EoZYTwXGZj5F9dmyxUH4JVrY07bFscbLtsIOmUj9Y0gKNXZj387nEfALsar3sfXbABR4cbUL7FcQXYrNQARvA2DL2wBxU2aglJ3HWAOxehjVY1l-isVk2Aq-OdoK_H-efsKXl5WzzPHl4SwymLSWVqonTGNdWppDylptZUZLWSqlaGV4QJDSLlJodM5LrO86oSWguimagyKdkE3R52O-9-egix3NhgoGlUC64PJaUyK2hWMD6g6QE13oXBaV123m6U35WUlHvX5fvg-gO281KK8uB6KN0c93u9geq_8ieX_QLSo38I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1186916934</pqid></control><display><type>article</type><title>Non-Gaussianity in single-particle tracking: use of kurtosis to learn the characteristics of a cage-type potential</title><source>MEDLINE</source><source>American Physical Society Journals</source><creator>Lushnikov, Pavel M ; Sulc, Petr ; Turitsyn, Konstantin S</creator><creatorcontrib>Lushnikov, Pavel M ; Sulc, Petr ; Turitsyn, Konstantin S</creatorcontrib><description>Nonlinear interaction of membrane proteins with cytoskeleton and membrane leads to non-Gaussian structure of their displacement probability distribution. We propose a statistical analysis technique for learning the characteristics of the nonlinear potential from the time dependence of the cumulants of the displacement distribution. The efficiency of the approach is demonstrated on the analysis of the kurtosis of the displacement distribution of the particle traveling on a membrane in a cage-type potential. Results of numerical simulations are supported by analytical predictions. We show that the approach allows robust identification of some characteristics of the potential for the much lower temporal resolution compared with the mean-square displacement analysis and we demonstrate robustness to experimental errors in determining the particle positions.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/physreve.85.051905</identifier><identifier>PMID: 23004786</identifier><language>eng</language><publisher>United States</publisher><subject>Diffusion ; Membrane Potentials ; Membrane Proteins - metabolism ; Normal Distribution ; Probability ; Statistical Distributions ; Time Factors</subject><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2012-05, Vol.85 (5 Pt 1), p.051905-051905, Article 051905</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-dcf0ab64b1b281421cfb156fa8afac4d035be524c7e657bf77dd5bb50b35d6883</citedby><cites>FETCH-LOGICAL-c413t-dcf0ab64b1b281421cfb156fa8afac4d035be524c7e657bf77dd5bb50b35d6883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23004786$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lushnikov, Pavel M</creatorcontrib><creatorcontrib>Sulc, Petr</creatorcontrib><creatorcontrib>Turitsyn, Konstantin S</creatorcontrib><title>Non-Gaussianity in single-particle tracking: use of kurtosis to learn the characteristics of a cage-type potential</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>Nonlinear interaction of membrane proteins with cytoskeleton and membrane leads to non-Gaussian structure of their displacement probability distribution. We propose a statistical analysis technique for learning the characteristics of the nonlinear potential from the time dependence of the cumulants of the displacement distribution. The efficiency of the approach is demonstrated on the analysis of the kurtosis of the displacement distribution of the particle traveling on a membrane in a cage-type potential. Results of numerical simulations are supported by analytical predictions. We show that the approach allows robust identification of some characteristics of the potential for the much lower temporal resolution compared with the mean-square displacement analysis and we demonstrate robustness to experimental errors in determining the particle positions.</description><subject>Diffusion</subject><subject>Membrane Potentials</subject><subject>Membrane Proteins - metabolism</subject><subject>Normal Distribution</subject><subject>Probability</subject><subject>Statistical Distributions</subject><subject>Time Factors</subject><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kLFOwzAURS0EoqXwAwzII0uKHduJw4aqUpAQIARzZDsvrWkaB9up1L8nVQvTu3o69w4HoWtKppQSdtetdsHDFqZSTImgBREnaEyFIEnK8ux0n1mRsFyIEboI4ZsQljLJz9EoZYTwXGZj5F9dmyxUH4JVrY07bFscbLtsIOmUj9Y0gKNXZj387nEfALsar3sfXbABR4cbUL7FcQXYrNQARvA2DL2wBxU2aglJ3HWAOxehjVY1l-isVk2Aq-OdoK_H-efsKXl5WzzPHl4SwymLSWVqonTGNdWppDylptZUZLWSqlaGV4QJDSLlJodM5LrO86oSWguimagyKdkE3R52O-9-egix3NhgoGlUC64PJaUyK2hWMD6g6QE13oXBaV123m6U35WUlHvX5fvg-gO281KK8uB6KN0c93u9geq_8ieX_QLSo38I</recordid><startdate>20120514</startdate><enddate>20120514</enddate><creator>Lushnikov, Pavel M</creator><creator>Sulc, Petr</creator><creator>Turitsyn, Konstantin S</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120514</creationdate><title>Non-Gaussianity in single-particle tracking: use of kurtosis to learn the characteristics of a cage-type potential</title><author>Lushnikov, Pavel M ; Sulc, Petr ; Turitsyn, Konstantin S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-dcf0ab64b1b281421cfb156fa8afac4d035be524c7e657bf77dd5bb50b35d6883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Diffusion</topic><topic>Membrane Potentials</topic><topic>Membrane Proteins - metabolism</topic><topic>Normal Distribution</topic><topic>Probability</topic><topic>Statistical Distributions</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lushnikov, Pavel M</creatorcontrib><creatorcontrib>Sulc, Petr</creatorcontrib><creatorcontrib>Turitsyn, Konstantin S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lushnikov, Pavel M</au><au>Sulc, Petr</au><au>Turitsyn, Konstantin S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-Gaussianity in single-particle tracking: use of kurtosis to learn the characteristics of a cage-type potential</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2012-05-14</date><risdate>2012</risdate><volume>85</volume><issue>5 Pt 1</issue><spage>051905</spage><epage>051905</epage><pages>051905-051905</pages><artnum>051905</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>Nonlinear interaction of membrane proteins with cytoskeleton and membrane leads to non-Gaussian structure of their displacement probability distribution. We propose a statistical analysis technique for learning the characteristics of the nonlinear potential from the time dependence of the cumulants of the displacement distribution. The efficiency of the approach is demonstrated on the analysis of the kurtosis of the displacement distribution of the particle traveling on a membrane in a cage-type potential. Results of numerical simulations are supported by analytical predictions. We show that the approach allows robust identification of some characteristics of the potential for the much lower temporal resolution compared with the mean-square displacement analysis and we demonstrate robustness to experimental errors in determining the particle positions.</abstract><cop>United States</cop><pmid>23004786</pmid><doi>10.1103/physreve.85.051905</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1539-3755 |
ispartof | Physical review. E, Statistical, nonlinear, and soft matter physics, 2012-05, Vol.85 (5 Pt 1), p.051905-051905, Article 051905 |
issn | 1539-3755 1550-2376 |
language | eng |
recordid | cdi_proquest_miscellaneous_1186916934 |
source | MEDLINE; American Physical Society Journals |
subjects | Diffusion Membrane Potentials Membrane Proteins - metabolism Normal Distribution Probability Statistical Distributions Time Factors |
title | Non-Gaussianity in single-particle tracking: use of kurtosis to learn the characteristics of a cage-type potential |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T12%3A42%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-Gaussianity%20in%20single-particle%20tracking:%20use%20of%20kurtosis%20to%20learn%20the%20characteristics%20of%20a%20cage-type%20potential&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Lushnikov,%20Pavel%20M&rft.date=2012-05-14&rft.volume=85&rft.issue=5%20Pt%201&rft.spage=051905&rft.epage=051905&rft.pages=051905-051905&rft.artnum=051905&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/physreve.85.051905&rft_dat=%3Cproquest_cross%3E1186916934%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1186916934&rft_id=info:pmid/23004786&rfr_iscdi=true |