Non-Gaussianity in single-particle tracking: use of kurtosis to learn the characteristics of a cage-type potential

Nonlinear interaction of membrane proteins with cytoskeleton and membrane leads to non-Gaussian structure of their displacement probability distribution. We propose a statistical analysis technique for learning the characteristics of the nonlinear potential from the time dependence of the cumulants...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2012-05, Vol.85 (5 Pt 1), p.051905-051905, Article 051905
Hauptverfasser: Lushnikov, Pavel M, Sulc, Petr, Turitsyn, Konstantin S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nonlinear interaction of membrane proteins with cytoskeleton and membrane leads to non-Gaussian structure of their displacement probability distribution. We propose a statistical analysis technique for learning the characteristics of the nonlinear potential from the time dependence of the cumulants of the displacement distribution. The efficiency of the approach is demonstrated on the analysis of the kurtosis of the displacement distribution of the particle traveling on a membrane in a cage-type potential. Results of numerical simulations are supported by analytical predictions. We show that the approach allows robust identification of some characteristics of the potential for the much lower temporal resolution compared with the mean-square displacement analysis and we demonstrate robustness to experimental errors in determining the particle positions.
ISSN:1539-3755
1550-2376
DOI:10.1103/physreve.85.051905