Flexible and low-voltage integrated circuits constructed from high-performance nanocrystal transistors

Colloidal semiconductor nanocrystals are emerging as a new class of solution-processable materials for low-cost, flexible, thin-film electronics. Although these colloidal inks have been shown to form single, thin-film field-effect transistors with impressive characteristics, the use of multiple high...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2012-11, Vol.3 (1), p.1216-1216, Article 1216
Hauptverfasser: Kim, David K., Lai, Yuming, Diroll, Benjamin T., Murray, Christopher B., Kagan, Cherie R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Colloidal semiconductor nanocrystals are emerging as a new class of solution-processable materials for low-cost, flexible, thin-film electronics. Although these colloidal inks have been shown to form single, thin-film field-effect transistors with impressive characteristics, the use of multiple high-performance nanocrystal field-effect transistors in large-area integrated circuits has not been shown. This is needed to understand and demonstrate the applicability of these discrete nanocrystal field-effect transistors for advanced electronic technologies. Here we report solution-deposited nanocrystal integrated circuits, showing nanocrystal integrated circuit inverters, amplifiers and ring oscillators, constructed from high-performance, low-voltage, low-hysteresis CdSe nanocrystal field-effect transistors with electron mobilities of up to 22 cm 2  V −1  s −1 , current modulation >10 6 and subthreshold swing of 0.28 V dec −1 . We fabricated the nanocrystal field-effect transistors and nanocrystal integrated circuits from colloidal inks on flexible plastic substrates and scaled the devices to operate at low voltages. We demonstrate that colloidal nanocrystal field-effect transistors can be used as building blocks to construct complex integrated circuits, promising a viable material for low-cost, flexible, large-area electronics. Field-effect transistors based on semiconductor nanocrystals are promising candidates for low-cost, flexible electronics. This work demonstrates fabrication on flexible substrates and low-voltage operations of integrated circuits based on nanocrystal transistors, including amplifiers and ring oscillators.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms2218