Flexible and low-voltage integrated circuits constructed from high-performance nanocrystal transistors
Colloidal semiconductor nanocrystals are emerging as a new class of solution-processable materials for low-cost, flexible, thin-film electronics. Although these colloidal inks have been shown to form single, thin-film field-effect transistors with impressive characteristics, the use of multiple high...
Gespeichert in:
Veröffentlicht in: | Nature communications 2012-11, Vol.3 (1), p.1216-1216, Article 1216 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Colloidal semiconductor nanocrystals are emerging as a new class of solution-processable materials for low-cost, flexible, thin-film electronics. Although these colloidal inks have been shown to form single, thin-film field-effect transistors with impressive characteristics, the use of multiple high-performance nanocrystal field-effect transistors in large-area integrated circuits has not been shown. This is needed to understand and demonstrate the applicability of these discrete nanocrystal field-effect transistors for advanced electronic technologies. Here we report solution-deposited nanocrystal integrated circuits, showing nanocrystal integrated circuit inverters, amplifiers and ring oscillators, constructed from high-performance, low-voltage, low-hysteresis CdSe nanocrystal field-effect transistors with electron mobilities of up to 22 cm
2
V
−1
s
−1
, current modulation >10
6
and subthreshold swing of 0.28 V dec
−1
. We fabricated the nanocrystal field-effect transistors and nanocrystal integrated circuits from colloidal inks on flexible plastic substrates and scaled the devices to operate at low voltages. We demonstrate that colloidal nanocrystal field-effect transistors can be used as building blocks to construct complex integrated circuits, promising a viable material for low-cost, flexible, large-area electronics.
Field-effect transistors based on semiconductor nanocrystals are promising candidates for low-cost, flexible electronics. This work demonstrates fabrication on flexible substrates and low-voltage operations of integrated circuits based on nanocrystal transistors, including amplifiers and ring oscillators. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/ncomms2218 |