Identification and Characterization of Four Missense Mutations in Brown midrib 12 (Bmr12), the Caffeic O-Methyltranferase (COMT) of Sorghum
Modifying lignin content and composition are targets to improve bioenergy crops for cellulosic conversion to biofuels. In sorghum and other C4 grasses, the brown midrib mutants have been shown to reduce lignin content and alter its composition. Bmr12 encodes the sorghum caffeic O -methyltransferase,...
Gespeichert in:
Veröffentlicht in: | Bioenergy research 2012-12, Vol.5 (4), p.855-865 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Modifying lignin content and composition are targets to improve bioenergy crops for cellulosic conversion to biofuels. In sorghum and other C4 grasses, the
brown midrib
mutants have been shown to reduce lignin content and alter its composition.
Bmr12
encodes the sorghum caffeic
O
-methyltransferase, which catalyzes the penultimate step in monolignol biosynthesis. From an EMS-mutagenized TILLING population, four
bmr12
mutants were isolated. DNA sequencing identified the four missense mutations in the
Bmr12
coding region, which changed evolutionarily conserved amino acids Ala71Val, Pro150Leu, Gly225Asp, and Gly325Ser. The previously characterized
bmr12
mutants all contain premature stop codons. These newly identified mutants, along with the previously characterized
bmr12-ref
, represent the first allelic series of
bmr12
mutants available in the same genetic background. The impacts of these newly identified mutations on protein accumulation, enzyme activity, Klason lignin content, lignin subunit composition, and saccharification yield were determined. Gly225Asp mutant greatly reduced protein accumulation, and Pro150Leu and Gly325Ser greatly impaired enzyme activity compared to wild type (WT). All four mutants significantly reduced Klason lignin content and altered lignin composition resulting in a significantly reduced S/G ratio relative to WT, but the overall impact of these mutations was less severe than
bmr12-ref
. Except for Gly325Ser, which is a hypomorphic mutant, all mutants increased the saccharification yield relative to WT. These mutants represent new tools to decrease lignin content and S/G ratio, possibly leading toward the ability to tailor lignin content and composition in the bioenergy grass sorghum. |
---|---|
ISSN: | 1939-1234 1939-1242 |
DOI: | 10.1007/s12155-012-9197-z |