Electrochemical double layer capacitor performance of electrospun polymer fiber-electrolyte membrane fabricated by solvent-assisted and thermally induced compression molding processes
► Polymer electrolyte membranes were fabricated by compression of electrospun fibers. ► Polymer electrolyte membranes exhibit a free-standing shape with bending capability. ► SPEs showed good performances compared with the liquid organic electrolyte. The electrochemical characteristics of electric d...
Gespeichert in:
Veröffentlicht in: | Journal of membrane science 2012-08, Vol.409-410, p.365-370 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ► Polymer electrolyte membranes were fabricated by compression of electrospun fibers. ► Polymer electrolyte membranes exhibit a free-standing shape with bending capability. ► SPEs showed good performances compared with the liquid organic electrolyte.
The electrochemical characteristics of electric double layer capacitors composed of solid polymer electrolytes with different thicknesses were investigated. A solid polymer electrolyte membrane was fabricated using electrospun fibers through solvent-assisted or thermally induced compression molding. Through the solvent-assisted or thermally induced compression molding processes, the poly(acrylonitrile) (PAN) microfibers consolidated together by the interlocking of the fibers under compression. A solid polymer electrolyte membrane clearly exhibited a free-standing shape with a bending capability. The electrospun PAN non-woven fabric and electrolyte salt composites showed higher ionic conductivity (>10−3Scm−1 at 298K) and capacitance compared with the liquid organic electrolyte. The solid polymer electrolytes provided a 10.6% increase in the energy density, seemingly due to the decrease in the IR drop and increase in the capacitance. |
---|---|
ISSN: | 0376-7388 1873-3123 |
DOI: | 10.1016/j.memsci.2012.04.007 |