IGF-I measurement across blood, interstitial fluid, and muscle biocompartments following explosive, high-power exercise

Insulin-like growth factor-I (IGF-I) resides across different biocompartments [blood, interstitial fluid (ISF), and muscle]. Whether circulating IGF-I responses to exercise reflect local events remains uncertain. We measured the IGF-I response to plyometric exercise across blood, ISF, and muscle bio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology. Regulatory, integrative and comparative physiology integrative and comparative physiology, 2012-11, Vol.303 (10), p.R1080-R1089
Hauptverfasser: Nindl, Bradley C, Urso, Maria L, Pierce, Joseph R, Scofield, Dennis E, Barnes, Brian R, Kraemer, William J, Anderson, Jeffrey M, Maresh, Carl M, Beasley, Kathleen N, Zambraski, Edward J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Insulin-like growth factor-I (IGF-I) resides across different biocompartments [blood, interstitial fluid (ISF), and muscle]. Whether circulating IGF-I responses to exercise reflect local events remains uncertain. We measured the IGF-I response to plyometric exercise across blood, ISF, and muscle biopsy from the vastus lateralis. Twenty volunteers (8 men, 12 women, 22 ± 1 yr) performed 10 sets of 10 plyometric jump repetitions at a 40% 1-repetition maximum. Blood, ISF, and muscle samples were taken pre- and postexercise. Circulating IGF-I increased postexercise: total IGF-I (preexercise = 546 ± 42, midexercise = 585 ± 43, postexercise = 597 ± 45, +30 = 557 ± 42, +60 = 536 ± 40, +120 = 567 ± 42 ng/ml; midexercise, postexercise, and +120 greater than preexercise, P < 0.05); Free IGF-I (preexercise = 0.83 ± 0.09, midexercise = 0.78 ± 0.10, postexercise = 0.79 ± 0.11, +30 = 0.93 ± 0.10, +60 = 0.88 ± 0.10, + 120 = 0.91 ± 0.11 ng/ml; +30 greater than all other preceding time points, P < 0.05). No exercise-induced changes were observed for ISF IGF-I (preexercise = 2.35 ± 0.29, postexercise = 2.46 ± 0.35 ng/ml). No changes were observed for skeletal muscle IGF-I protein, although IGF-I mRNA content increased ∼40% postexercise. The increase in circulating total and free IGF-I was not correlated with increases in ISF IGF-I or muscle IGF-I protein content. Our data indicate that exercise-induced increases in circulating IGF-I are not reflective of local IGF-I signaling.
ISSN:0363-6119
1522-1490
DOI:10.1152/ajpregu.00275.2012