On the use of stochastic ordering to test for trend with clustered binary data
We introduce the use of stochastic ordering for defining treatment-related trend in clustered exchangeable binary data for both when cluster sizes are fixed and when they vary randomly. In the latter case, there is a well-documented tendency for such data to be sparse, a problem we address by making...
Gespeichert in:
Veröffentlicht in: | Biometrika 2010-03, Vol.97 (1), p.95-108 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce the use of stochastic ordering for defining treatment-related trend in clustered exchangeable binary data for both when cluster sizes are fixed and when they vary randomly. In the latter case, there is a well-documented tendency for such data to be sparse, a problem we address by making an assumption of interpretability or, equivalently, marginal compatibility. Our procedures are based on a representation of the joint distribution of binary exchangeable random variables by a saturated model, and may hence be considered nonparametric. The definition of trend by stochastic ordering is proposed to ensure a flexibility that allows for various forms of monotone increases in response to the cluster as a whole to be included in the evaluation of the trend. We obtain maximum likelihood estimates of probability functions under stochastic ordering using mixture-likelihood-based algorithms. Since the data are sparse, we avoid the use of asymptotic results and obtain p-values of the likelihood ratio procedures by permutation resampling. We demonstrate how the proposed framework can be used in risk assessment, and provide comparisons with existing procedures. |
---|---|
ISSN: | 0006-3444 1464-3510 1464-3510 0006-3444 |
DOI: | 10.1093/biomet/asp077 |