Weighted least squares approximate restricted likelihood estimation for vector autoregressive processes

We derive a weighted least squares approximate restricted likelihood estimator for a k-dimensional pth-order autoregressive model with intercept. Exact likelihood optimization of this model is generally infeasible due to the parameter space, which is complicated and high-dimensional, involving pk2 p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrika 2010-03, Vol.97 (1), p.231-237
Hauptverfasser: CHEN, WILLA W., DEO, ROHIT S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 237
container_issue 1
container_start_page 231
container_title Biometrika
container_volume 97
creator CHEN, WILLA W.
DEO, ROHIT S.
description We derive a weighted least squares approximate restricted likelihood estimator for a k-dimensional pth-order autoregressive model with intercept. Exact likelihood optimization of this model is generally infeasible due to the parameter space, which is complicated and high-dimensional, involving pk2 parameters. The weighted least squares estimator has significantly reduced bias and mean squared error than the ordinary least squares estimator for both stationary and nonstationary processes. Furthermore, at the unit root, the limiting distribution of the weighted least squares approximate restricted likelihood estimator is shown to be the zero-intercept Dickey–Fuller distribution, unlike the ordinary least squares with intercept estimator that has a different distribution with significantly higher bias.
doi_str_mv 10.1093/biomet/asp071
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1171867446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27798911</jstor_id><oup_id>10.1093/biomet/asp071</oup_id><sourcerecordid>27798911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-88e704ab54b66071376138bca2c103d65bd015a525fcbaa0a47fde79a73a30533</originalsourceid><addsrcrecordid>eNqFkctv00AQhy0EEqFw5IhkISFxcbvrfdlHqGhDVYkLqKiX1XgzTjZ1su6uHbX_PRMcJRIXDjOzj29_89gse8_ZOWe1uGh82OBwAalnhr_IZlxqWQjF2ctsxhjThZBSvs7epLTeb7XSs2x5h365GnCRdwhpyNPjCBFTDn0fw5PfwIA57Yfo3V_IP2DnVyEscjrcX_uwzdsQ8x26gQKM5HFJT5LfYU4ijpaY3mavWugSvjvEs-zX1befl_Pi9sf198svt4WTlRmKqkLDJDRKNlpTF8JoLqrGQek4EwutmgXjClSpWtcAMJCmXaCpwQgQTAlxln2edCnz40g12o1PDrsOthjGZDk3vNJGSk3ox3_QdRjjlqqzJeO61lVdElRMkIshpYit7SO1HZ8tZ3Y_dTtN3U5TJ_5m4iP26I5wGPsDt7MCakPumYzyMAqejJP1-yPBbSmMXQ0bEvt0qBCSg66NsHU-HUXLUtUVN-WpaUrz3_o-TOg60UedpIypq5rzU78-Dfh0vIf4YLURRtn573v79f5aM3F1Z-fiD75Vxjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201696892</pqid></control><display><type>article</type><title>Weighted least squares approximate restricted likelihood estimation for vector autoregressive processes</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>RePEc</source><source>Alma/SFX Local Collection</source><source>JSTOR Mathematics &amp; Statistics</source><creator>CHEN, WILLA W. ; DEO, ROHIT S.</creator><creatorcontrib>CHEN, WILLA W. ; DEO, ROHIT S.</creatorcontrib><description>We derive a weighted least squares approximate restricted likelihood estimator for a k-dimensional pth-order autoregressive model with intercept. Exact likelihood optimization of this model is generally infeasible due to the parameter space, which is complicated and high-dimensional, involving pk2 parameters. The weighted least squares estimator has significantly reduced bias and mean squared error than the ordinary least squares estimator for both stationary and nonstationary processes. Furthermore, at the unit root, the limiting distribution of the weighted least squares approximate restricted likelihood estimator is shown to be the zero-intercept Dickey–Fuller distribution, unlike the ordinary least squares with intercept estimator that has a different distribution with significantly higher bias.</description><identifier>ISSN: 0006-3444</identifier><identifier>ISSN: 1464-3510</identifier><identifier>EISSN: 1464-3510</identifier><identifier>EISSN: 0006-3444</identifier><identifier>DOI: 10.1093/biomet/asp071</identifier><identifier>CODEN: BIOKAX</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Applications ; Approximation ; Autoregressive models ; Autoregressive process ; Bias ; Biology, psychology, social sciences ; Calculus of variations and optimal control ; Coefficients ; Consistent estimators ; Estimating techniques ; Estimation bias ; Estimators ; Exact sciences and technology ; General topics ; Least squares ; Mathematical analysis ; Mathematics ; Maximum likelihood estimation ; Maximum likelihood estimators ; Miscellanea ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical methods in mathematical programming, optimization and calculus of variations ; Numerical methods in optimization and calculus of variations ; Optimization ; Probability and statistics ; Regression analysis ; Restricted maximum likelihood ; Root mean square errors ; Roots ; Sampling bias ; Sciences and techniques of general use ; Statistics ; Studies ; Unbiased estimating equation</subject><ispartof>Biometrika, 2010-03, Vol.97 (1), p.231-237</ispartof><rights>2010 Biometrika Trust</rights><rights>Oxford University Press © 2010 Biometrika Trust 2010</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Oxford Publishing Limited(England) Mar 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-88e704ab54b66071376138bca2c103d65bd015a525fcbaa0a47fde79a73a30533</citedby><cites>FETCH-LOGICAL-c487t-88e704ab54b66071376138bca2c103d65bd015a525fcbaa0a47fde79a73a30533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27798911$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27798911$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,1578,3994,27901,27902,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22598172$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/oupbiomet/v_3a97_3ay_3a2010_3ai_3a1_3ap_3a231-237.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>CHEN, WILLA W.</creatorcontrib><creatorcontrib>DEO, ROHIT S.</creatorcontrib><title>Weighted least squares approximate restricted likelihood estimation for vector autoregressive processes</title><title>Biometrika</title><description>We derive a weighted least squares approximate restricted likelihood estimator for a k-dimensional pth-order autoregressive model with intercept. Exact likelihood optimization of this model is generally infeasible due to the parameter space, which is complicated and high-dimensional, involving pk2 parameters. The weighted least squares estimator has significantly reduced bias and mean squared error than the ordinary least squares estimator for both stationary and nonstationary processes. Furthermore, at the unit root, the limiting distribution of the weighted least squares approximate restricted likelihood estimator is shown to be the zero-intercept Dickey–Fuller distribution, unlike the ordinary least squares with intercept estimator that has a different distribution with significantly higher bias.</description><subject>Applications</subject><subject>Approximation</subject><subject>Autoregressive models</subject><subject>Autoregressive process</subject><subject>Bias</subject><subject>Biology, psychology, social sciences</subject><subject>Calculus of variations and optimal control</subject><subject>Coefficients</subject><subject>Consistent estimators</subject><subject>Estimating techniques</subject><subject>Estimation bias</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>General topics</subject><subject>Least squares</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Maximum likelihood estimation</subject><subject>Maximum likelihood estimators</subject><subject>Miscellanea</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical methods in mathematical programming, optimization and calculus of variations</subject><subject>Numerical methods in optimization and calculus of variations</subject><subject>Optimization</subject><subject>Probability and statistics</subject><subject>Regression analysis</subject><subject>Restricted maximum likelihood</subject><subject>Root mean square errors</subject><subject>Roots</subject><subject>Sampling bias</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Studies</subject><subject>Unbiased estimating equation</subject><issn>0006-3444</issn><issn>1464-3510</issn><issn>1464-3510</issn><issn>0006-3444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFkctv00AQhy0EEqFw5IhkISFxcbvrfdlHqGhDVYkLqKiX1XgzTjZ1su6uHbX_PRMcJRIXDjOzj29_89gse8_ZOWe1uGh82OBwAalnhr_IZlxqWQjF2ctsxhjThZBSvs7epLTeb7XSs2x5h365GnCRdwhpyNPjCBFTDn0fw5PfwIA57Yfo3V_IP2DnVyEscjrcX_uwzdsQ8x26gQKM5HFJT5LfYU4ijpaY3mavWugSvjvEs-zX1befl_Pi9sf198svt4WTlRmKqkLDJDRKNlpTF8JoLqrGQek4EwutmgXjClSpWtcAMJCmXaCpwQgQTAlxln2edCnz40g12o1PDrsOthjGZDk3vNJGSk3ox3_QdRjjlqqzJeO61lVdElRMkIshpYit7SO1HZ8tZ3Y_dTtN3U5TJ_5m4iP26I5wGPsDt7MCakPumYzyMAqejJP1-yPBbSmMXQ0bEvt0qBCSg66NsHU-HUXLUtUVN-WpaUrz3_o-TOg60UedpIypq5rzU78-Dfh0vIf4YLURRtn573v79f5aM3F1Z-fiD75Vxjw</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>CHEN, WILLA W.</creator><creator>DEO, ROHIT S.</creator><general>Oxford University Press</general><general>Biometrika Trust, University College London</general><general>Oxford University Press for Biometrika Trust</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20100301</creationdate><title>Weighted least squares approximate restricted likelihood estimation for vector autoregressive processes</title><author>CHEN, WILLA W. ; DEO, ROHIT S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-88e704ab54b66071376138bca2c103d65bd015a525fcbaa0a47fde79a73a30533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applications</topic><topic>Approximation</topic><topic>Autoregressive models</topic><topic>Autoregressive process</topic><topic>Bias</topic><topic>Biology, psychology, social sciences</topic><topic>Calculus of variations and optimal control</topic><topic>Coefficients</topic><topic>Consistent estimators</topic><topic>Estimating techniques</topic><topic>Estimation bias</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>General topics</topic><topic>Least squares</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Maximum likelihood estimation</topic><topic>Maximum likelihood estimators</topic><topic>Miscellanea</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical methods in mathematical programming, optimization and calculus of variations</topic><topic>Numerical methods in optimization and calculus of variations</topic><topic>Optimization</topic><topic>Probability and statistics</topic><topic>Regression analysis</topic><topic>Restricted maximum likelihood</topic><topic>Root mean square errors</topic><topic>Roots</topic><topic>Sampling bias</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Studies</topic><topic>Unbiased estimating equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CHEN, WILLA W.</creatorcontrib><creatorcontrib>DEO, ROHIT S.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CHEN, WILLA W.</au><au>DEO, ROHIT S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weighted least squares approximate restricted likelihood estimation for vector autoregressive processes</atitle><jtitle>Biometrika</jtitle><date>2010-03-01</date><risdate>2010</risdate><volume>97</volume><issue>1</issue><spage>231</spage><epage>237</epage><pages>231-237</pages><issn>0006-3444</issn><issn>1464-3510</issn><eissn>1464-3510</eissn><eissn>0006-3444</eissn><coden>BIOKAX</coden><abstract>We derive a weighted least squares approximate restricted likelihood estimator for a k-dimensional pth-order autoregressive model with intercept. Exact likelihood optimization of this model is generally infeasible due to the parameter space, which is complicated and high-dimensional, involving pk2 parameters. The weighted least squares estimator has significantly reduced bias and mean squared error than the ordinary least squares estimator for both stationary and nonstationary processes. Furthermore, at the unit root, the limiting distribution of the weighted least squares approximate restricted likelihood estimator is shown to be the zero-intercept Dickey–Fuller distribution, unlike the ordinary least squares with intercept estimator that has a different distribution with significantly higher bias.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/biomet/asp071</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3444
ispartof Biometrika, 2010-03, Vol.97 (1), p.231-237
issn 0006-3444
1464-3510
1464-3510
0006-3444
language eng
recordid cdi_proquest_miscellaneous_1171867446
source Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); RePEc; Alma/SFX Local Collection; JSTOR Mathematics & Statistics
subjects Applications
Approximation
Autoregressive models
Autoregressive process
Bias
Biology, psychology, social sciences
Calculus of variations and optimal control
Coefficients
Consistent estimators
Estimating techniques
Estimation bias
Estimators
Exact sciences and technology
General topics
Least squares
Mathematical analysis
Mathematics
Maximum likelihood estimation
Maximum likelihood estimators
Miscellanea
Numerical analysis
Numerical analysis. Scientific computation
Numerical methods in mathematical programming, optimization and calculus of variations
Numerical methods in optimization and calculus of variations
Optimization
Probability and statistics
Regression analysis
Restricted maximum likelihood
Root mean square errors
Roots
Sampling bias
Sciences and techniques of general use
Statistics
Studies
Unbiased estimating equation
title Weighted least squares approximate restricted likelihood estimation for vector autoregressive processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A20%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weighted%20least%20squares%20approximate%20restricted%20likelihood%20estimation%20for%20vector%20autoregressive%20processes&rft.jtitle=Biometrika&rft.au=CHEN,%20WILLA%20W.&rft.date=2010-03-01&rft.volume=97&rft.issue=1&rft.spage=231&rft.epage=237&rft.pages=231-237&rft.issn=0006-3444&rft.eissn=1464-3510&rft.coden=BIOKAX&rft_id=info:doi/10.1093/biomet/asp071&rft_dat=%3Cjstor_proqu%3E27798911%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201696892&rft_id=info:pmid/&rft_jstor_id=27798911&rft_oup_id=10.1093/biomet/asp071&rfr_iscdi=true