Weighted least squares approximate restricted likelihood estimation for vector autoregressive processes

We derive a weighted least squares approximate restricted likelihood estimator for a k-dimensional pth-order autoregressive model with intercept. Exact likelihood optimization of this model is generally infeasible due to the parameter space, which is complicated and high-dimensional, involving pk2 p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrika 2010-03, Vol.97 (1), p.231-237
Hauptverfasser: CHEN, WILLA W., DEO, ROHIT S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We derive a weighted least squares approximate restricted likelihood estimator for a k-dimensional pth-order autoregressive model with intercept. Exact likelihood optimization of this model is generally infeasible due to the parameter space, which is complicated and high-dimensional, involving pk2 parameters. The weighted least squares estimator has significantly reduced bias and mean squared error than the ordinary least squares estimator for both stationary and nonstationary processes. Furthermore, at the unit root, the limiting distribution of the weighted least squares approximate restricted likelihood estimator is shown to be the zero-intercept Dickey–Fuller distribution, unlike the ordinary least squares with intercept estimator that has a different distribution with significantly higher bias.
ISSN:0006-3444
1464-3510
1464-3510
0006-3444
DOI:10.1093/biomet/asp071