Shewanella frigidimarina microbial fuel cells and the influence of divalent cations on current output

The genes involved in the proposed pathway for Shewanella extracellular electron transfer (EET) are highly conserved. While extensive studies involving EET from a fresh water Shewanella microbe (S. oneidensis MR-1) to soluble and insoluble electron acceptors have been published, only a few reports h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biosensors & bioelectronics 2013-02, Vol.40 (1), p.102-109
Hauptverfasser: Fitzgerald, Lisa A., Petersen, Emily R., Leary, Dagmar H., Nadeau, Lloyd J., Soto, Carissa M., Ray, Richard I., Little, Brenda J., Ringeisen, Bradley R., Johnson, Glenn R., Vora, Gary J., Biffinger, Justin C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The genes involved in the proposed pathway for Shewanella extracellular electron transfer (EET) are highly conserved. While extensive studies involving EET from a fresh water Shewanella microbe (S. oneidensis MR-1) to soluble and insoluble electron acceptors have been published, only a few reports have examined EET from marine strains of Shewanella. Thus, Shewanella frigidimarina (an isolate from Antarctic Sea ice) was used within miniature microbial fuel cells (mini-MFC) to evaluate potential power output. During the course of this study several distinct differences were observed between S. oneidensis MR-1 and S. frigidimarina under comparable conditions. The maximum power density with S. frigidimarina was observed when the anolyte was half-strength marine broth (1/2 MB) (0.28μW/cm2) compared to Luria–Bertani (LB) (0.07μW/cm2) or a defined growth minimal medium (MM) (0.02μW/cm2). The systematic modification of S. frigidimarina cultured in 1/2 MB and LB with divalent cations shows that a maximum current output can be generated independent of internal ionic ohmic losses and the presence of external mediators.
ISSN:0956-5663
1873-4235
DOI:10.1016/j.bios.2012.06.039