Electrochemical Immunosensing Platform for DNA Methyltransferase Activity Analysis and Inhibitor Screening

In this paper, we developed a novel electrochemical method to quantify DNA methyltransferase (MTase) and analyze DNA MTase activity. After the double DNA helix structure was assembled on the surface of gold nanoparticle modified glassy carbon electrode, it was first methylated by M. SssI MTase and t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2012-11, Vol.84 (21), p.9072-9078
Hauptverfasser: Wang, Mo, Xu, Zhenning, Chen, Lijian, Yin, Huanshun, Ai, Shiyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we developed a novel electrochemical method to quantify DNA methyltransferase (MTase) and analyze DNA MTase activity. After the double DNA helix structure was assembled on the surface of gold nanoparticle modified glassy carbon electrode, it was first methylated by M. SssI MTase and then digested by restriction endonuclease HpaII, which could not recognize the methylated CpG site. Successively, anti-5-methylcytosine antibody was specifically conjugated on the CpG methylation site and horseradish peroxidase labeled goat antimouse IgG (HRP-IgG) was conjugated on anti-5-methylcytosine antibody. In the detection buffer solution containing H2O2 and hydroquinone, HRP-IgG can catalyze hydroquinone oxidation by H2O2 to generate benzoquinone, resulting in a highly electrochemical reduction signal. Consequently, the activity of M. SssI MTase was assayed, and DNA methylation was detected using the signal change with and without methylation. Furthermore, the inhibition investigation demonstrated that, in the presence of 160 μM S-adenosyl-l-methionine as methyl donor, 5-aza-2′-deoxycytidine, procaine, epicatechin, and caffeic acid could inhibit the M. SssI MTase activity with the IC50 values of 45.77, 410.3, 129.03, and 124.2 μM, respectively. Therefore, this study may provide a sensitive platform for screening DNA MTase inhibitors.
ISSN:0003-2700
1520-6882
DOI:10.1021/ac301620m