Effects of hydrofluoric acid and anodised micro and micro/nano surface implants on early osseointegration in rats

Abstract Our aim was to evaluate the effects of hydrofluoric acid and anodised micro and micro/nano surface implants on bony ingrowth in the earliest stage of implantation in rats. Sixty cylindrical screwed titanium alloy implants with machined, micro, and hierarchical hybrid micro/nano surfaces ( n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:British journal of oral & maxillofacial surgery 2012-12, Vol.50 (8), p.779-783
Hauptverfasser: Li, Yongfeng, Gao, Yuan, Shao, Bo, Xiao, Jianrui, Hu, Kaijin, Kong, Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Our aim was to evaluate the effects of hydrofluoric acid and anodised micro and micro/nano surface implants on bony ingrowth in the earliest stage of implantation in rats. Sixty cylindrical screwed titanium alloy implants with machined, micro, and hierarchical hybrid micro/nano surfaces ( n = 20 in each group) were inserted into the distal femurs of 30 female Sprague-Dawley rats. In vivo microcomputed tomography (micro CT) was used to assess microarchitectural changes in the bone around the implants 2 weeks after implantation. All the animals were then killed and the femurs with implants harvested for histological analysis and pull-out testing. Micro CT analysis showed that the trabecular thickness and the bone:volume ratio (bone volume:total volume) (BV:TV) increased significantly in the micro/nano group compared with the other two groups, while the trabecular separation decreased significantly in the micro/nano group compared with the machined group. The mean (SD) bone-implant contacts (%) were 38.94 (9.48), 41.67 (8.71), and 51.49 (12.49) in the machined, micro, and micro/nano groups, respectively. The maximum pull-out forces (N) were 64.95 (6.11), 71.45 (7.15), and 81.90 (13.1), respectively. Both bone-implant contacts and maximum pull-out forces were significantly higher in the micro/nano group, but there was no significant difference between the micro group and the machined group. These data indicate that the hierarchical hybrid micro/nano surface of the implant can promote osseointegration in the earliest stage of implantation, and may be a promising option for further clinical use.
ISSN:0266-4356
1532-1940
DOI:10.1016/j.bjoms.2011.12.008