Hamiltonian structures for the Ostrovsky–Vakhnenko equation
► A fifth order Ostrovsky–Vakhnenko equation is shown to be related with the Caudrey–Dodd–Gibbon–Sawada–Kotera equation. ► The bi-Hamiltonian formulation for Ostrovsky–Vakhnenko equation is derived. ► The relation between Hamiltonian structures when dependent and independent variables are transforme...
Gespeichert in:
Veröffentlicht in: | Communications in nonlinear science & numerical simulation 2013-01, Vol.18 (1), p.56-62 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ► A fifth order Ostrovsky–Vakhnenko equation is shown to be related with the Caudrey–Dodd–Gibbon–Sawada–Kotera equation. ► The bi-Hamiltonian formulation for Ostrovsky–Vakhnenko equation is derived. ► The relation between Hamiltonian structures when dependent and independent variables are transformed is studied.
We obtain a bi-Hamiltonian formulation for the Ostrovsky–Vakhnenko (OV) equation using its higher order symmetry and a new transformation to the Caudrey–Dodd–Gibbon–Sawada–Kotera equation. Central to this derivation is the relation between Hamiltonian structures when dependent and independent variables are transformed. |
---|---|
ISSN: | 1007-5704 1878-7274 |
DOI: | 10.1016/j.cnsns.2012.06.018 |