On the K best integer network flows
We address the problem of finding the K best integer solutions of a linear integer network flow problem. We design an O(f(n,m,L,U)+KmS(n,m,L)) time and O(K+m) memory space algorithm to determine the K best integer solutions, in a directed network with n nodes, m arcs, maximum absolute value cost L,...
Gespeichert in:
Veröffentlicht in: | Computers & operations research 2013-02, Vol.40 (2), p.616-626 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 626 |
---|---|
container_issue | 2 |
container_start_page | 616 |
container_title | Computers & operations research |
container_volume | 40 |
creator | Sedeño-Noda, Antonio Espino-Martín, Juan José |
description | We address the problem of finding the K best integer solutions of a linear integer network flow problem. We design an O(f(n,m,L,U)+KmS(n,m,L)) time and O(K+m) memory space algorithm to determine the K best integer solutions, in a directed network with n nodes, m arcs, maximum absolute value cost L, and an upper bound U on arc capacities and node supplies. f(n,m,L,U) is the best time needed to solve the minimum cost flow problem in a directed network and S(n,m,L) is the best time to solve the single-source shortest path problem in a network with non-negative lengths. The introduced algorithm efficiently determines a “proper minimal cycle” by taking advantage of the relationship between the best solutions. This way, we improve the theoretical as well as practical memory space bounds of the well-known method due to Hamacher. Our computational experiments confirm this result. |
doi_str_mv | 10.1016/j.cor.2012.08.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1136537530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0305054812001797</els_id><sourcerecordid>1136537530</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-92ccc3d831c33917877e22524b3ad12cfb03ad9386fa644f656767e19ab7eeb73</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9giVUgsCT47sWMxoYovUakLSGyW41wgJY2LnVLx73HVioGBW-6G5-5ePYScA82AgrhaZNb5jFFgGS0zCvkBGUEpeSpF8XpIRpTTIqVFXh6TkxAWNJZkMCKTeZ8M75g8JRWGIWn7Ad_QJz0OG-c_kqZzm3BKjhrTBTzb9zF5ubt9nj6ks_n94_Rmltoc1JAqZq3ldcnBcq5AllIiYwXLK25qYLapaBwUL0VjRJ43ohBSSARlKolYST4ml7u7K-8-1zGOXrbBYteZHt06aAAuCi4LTiM6-YMu3Nr3MZ0GqriiUtI8UrCjrHcheGz0yrdL478jpLfa9EJHbXqrTdNSR21x52J_2QRrusab3rbhd5HF1EoqEbnrHYfRyFeLXgfbYm-xbj3aQdeu_efLD9b8fw0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1093907704</pqid></control><display><type>article</type><title>On the K best integer network flows</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Sedeño-Noda, Antonio ; Espino-Martín, Juan José</creator><creatorcontrib>Sedeño-Noda, Antonio ; Espino-Martín, Juan José</creatorcontrib><description>We address the problem of finding the K best integer solutions of a linear integer network flow problem. We design an O(f(n,m,L,U)+KmS(n,m,L)) time and O(K+m) memory space algorithm to determine the K best integer solutions, in a directed network with n nodes, m arcs, maximum absolute value cost L, and an upper bound U on arc capacities and node supplies. f(n,m,L,U) is the best time needed to solve the minimum cost flow problem in a directed network and S(n,m,L) is the best time to solve the single-source shortest path problem in a network with non-negative lengths. The introduced algorithm efficiently determines a “proper minimal cycle” by taking advantage of the relationship between the best solutions. This way, we improve the theoretical as well as practical memory space bounds of the well-known method due to Hamacher. Our computational experiments confirm this result.</description><identifier>ISSN: 0305-0548</identifier><identifier>EISSN: 1873-765X</identifier><identifier>EISSN: 0305-0548</identifier><identifier>DOI: 10.1016/j.cor.2012.08.014</identifier><identifier>CODEN: CMORAP</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Algorithms ; Applied sciences ; Combinatorial optimization ; Cost engineering ; Cost reduction ; Exact sciences and technology ; Flows in networks. Combinatorial problems ; Integer programming ; Integers ; K best integer network flow problem ; Mathematical models ; Minimum cost ; Minimum cost flow problem ; Network flow problem ; Networks ; Operational research and scientific management ; Operational research. Management science ; Operations research ; Optimization algorithms ; Shortest-path problems ; Studies</subject><ispartof>Computers & operations research, 2013-02, Vol.40 (2), p.616-626</ispartof><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><rights>Copyright Pergamon Press Inc. Feb 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-92ccc3d831c33917877e22524b3ad12cfb03ad9386fa644f656767e19ab7eeb73</citedby><cites>FETCH-LOGICAL-c419t-92ccc3d831c33917877e22524b3ad12cfb03ad9386fa644f656767e19ab7eeb73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cor.2012.08.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26569796$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sedeño-Noda, Antonio</creatorcontrib><creatorcontrib>Espino-Martín, Juan José</creatorcontrib><title>On the K best integer network flows</title><title>Computers & operations research</title><description>We address the problem of finding the K best integer solutions of a linear integer network flow problem. We design an O(f(n,m,L,U)+KmS(n,m,L)) time and O(K+m) memory space algorithm to determine the K best integer solutions, in a directed network with n nodes, m arcs, maximum absolute value cost L, and an upper bound U on arc capacities and node supplies. f(n,m,L,U) is the best time needed to solve the minimum cost flow problem in a directed network and S(n,m,L) is the best time to solve the single-source shortest path problem in a network with non-negative lengths. The introduced algorithm efficiently determines a “proper minimal cycle” by taking advantage of the relationship between the best solutions. This way, we improve the theoretical as well as practical memory space bounds of the well-known method due to Hamacher. Our computational experiments confirm this result.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Combinatorial optimization</subject><subject>Cost engineering</subject><subject>Cost reduction</subject><subject>Exact sciences and technology</subject><subject>Flows in networks. Combinatorial problems</subject><subject>Integer programming</subject><subject>Integers</subject><subject>K best integer network flow problem</subject><subject>Mathematical models</subject><subject>Minimum cost</subject><subject>Minimum cost flow problem</subject><subject>Network flow problem</subject><subject>Networks</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Operations research</subject><subject>Optimization algorithms</subject><subject>Shortest-path problems</subject><subject>Studies</subject><issn>0305-0548</issn><issn>1873-765X</issn><issn>0305-0548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9giVUgsCT47sWMxoYovUakLSGyW41wgJY2LnVLx73HVioGBW-6G5-5ePYScA82AgrhaZNb5jFFgGS0zCvkBGUEpeSpF8XpIRpTTIqVFXh6TkxAWNJZkMCKTeZ8M75g8JRWGIWn7Ad_QJz0OG-c_kqZzm3BKjhrTBTzb9zF5ubt9nj6ks_n94_Rmltoc1JAqZq3ldcnBcq5AllIiYwXLK25qYLapaBwUL0VjRJ43ohBSSARlKolYST4ml7u7K-8-1zGOXrbBYteZHt06aAAuCi4LTiM6-YMu3Nr3MZ0GqriiUtI8UrCjrHcheGz0yrdL478jpLfa9EJHbXqrTdNSR21x52J_2QRrusab3rbhd5HF1EoqEbnrHYfRyFeLXgfbYm-xbj3aQdeu_efLD9b8fw0</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Sedeño-Noda, Antonio</creator><creator>Espino-Martín, Juan José</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Pergamon Press Inc</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130201</creationdate><title>On the K best integer network flows</title><author>Sedeño-Noda, Antonio ; Espino-Martín, Juan José</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-92ccc3d831c33917877e22524b3ad12cfb03ad9386fa644f656767e19ab7eeb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Combinatorial optimization</topic><topic>Cost engineering</topic><topic>Cost reduction</topic><topic>Exact sciences and technology</topic><topic>Flows in networks. Combinatorial problems</topic><topic>Integer programming</topic><topic>Integers</topic><topic>K best integer network flow problem</topic><topic>Mathematical models</topic><topic>Minimum cost</topic><topic>Minimum cost flow problem</topic><topic>Network flow problem</topic><topic>Networks</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Operations research</topic><topic>Optimization algorithms</topic><topic>Shortest-path problems</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sedeño-Noda, Antonio</creatorcontrib><creatorcontrib>Espino-Martín, Juan José</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sedeño-Noda, Antonio</au><au>Espino-Martín, Juan José</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the K best integer network flows</atitle><jtitle>Computers & operations research</jtitle><date>2013-02-01</date><risdate>2013</risdate><volume>40</volume><issue>2</issue><spage>616</spage><epage>626</epage><pages>616-626</pages><issn>0305-0548</issn><eissn>1873-765X</eissn><eissn>0305-0548</eissn><coden>CMORAP</coden><abstract>We address the problem of finding the K best integer solutions of a linear integer network flow problem. We design an O(f(n,m,L,U)+KmS(n,m,L)) time and O(K+m) memory space algorithm to determine the K best integer solutions, in a directed network with n nodes, m arcs, maximum absolute value cost L, and an upper bound U on arc capacities and node supplies. f(n,m,L,U) is the best time needed to solve the minimum cost flow problem in a directed network and S(n,m,L) is the best time to solve the single-source shortest path problem in a network with non-negative lengths. The introduced algorithm efficiently determines a “proper minimal cycle” by taking advantage of the relationship between the best solutions. This way, we improve the theoretical as well as practical memory space bounds of the well-known method due to Hamacher. Our computational experiments confirm this result.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cor.2012.08.014</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-0548 |
ispartof | Computers & operations research, 2013-02, Vol.40 (2), p.616-626 |
issn | 0305-0548 1873-765X 0305-0548 |
language | eng |
recordid | cdi_proquest_miscellaneous_1136537530 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Algorithms Applied sciences Combinatorial optimization Cost engineering Cost reduction Exact sciences and technology Flows in networks. Combinatorial problems Integer programming Integers K best integer network flow problem Mathematical models Minimum cost Minimum cost flow problem Network flow problem Networks Operational research and scientific management Operational research. Management science Operations research Optimization algorithms Shortest-path problems Studies |
title | On the K best integer network flows |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T02%3A44%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20K%20best%20integer%20network%20flows&rft.jtitle=Computers%20&%20operations%20research&rft.au=Sede%C3%B1o-Noda,%20Antonio&rft.date=2013-02-01&rft.volume=40&rft.issue=2&rft.spage=616&rft.epage=626&rft.pages=616-626&rft.issn=0305-0548&rft.eissn=1873-765X&rft.coden=CMORAP&rft_id=info:doi/10.1016/j.cor.2012.08.014&rft_dat=%3Cproquest_cross%3E1136537530%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1093907704&rft_id=info:pmid/&rft_els_id=S0305054812001797&rfr_iscdi=true |