On the K best integer network flows

We address the problem of finding the K best integer solutions of a linear integer network flow problem. We design an O(f(n,m,L,U)+KmS(n,m,L)) time and O(K+m) memory space algorithm to determine the K best integer solutions, in a directed network with n nodes, m arcs, maximum absolute value cost L,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & operations research 2013-02, Vol.40 (2), p.616-626
Hauptverfasser: Sedeño-Noda, Antonio, Espino-Martín, Juan José
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 626
container_issue 2
container_start_page 616
container_title Computers & operations research
container_volume 40
creator Sedeño-Noda, Antonio
Espino-Martín, Juan José
description We address the problem of finding the K best integer solutions of a linear integer network flow problem. We design an O(f(n,m,L,U)+KmS(n,m,L)) time and O(K+m) memory space algorithm to determine the K best integer solutions, in a directed network with n nodes, m arcs, maximum absolute value cost L, and an upper bound U on arc capacities and node supplies. f(n,m,L,U) is the best time needed to solve the minimum cost flow problem in a directed network and S(n,m,L) is the best time to solve the single-source shortest path problem in a network with non-negative lengths. The introduced algorithm efficiently determines a “proper minimal cycle” by taking advantage of the relationship between the best solutions. This way, we improve the theoretical as well as practical memory space bounds of the well-known method due to Hamacher. Our computational experiments confirm this result.
doi_str_mv 10.1016/j.cor.2012.08.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1136537530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0305054812001797</els_id><sourcerecordid>1136537530</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-92ccc3d831c33917877e22524b3ad12cfb03ad9386fa644f656767e19ab7eeb73</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9giVUgsCT47sWMxoYovUakLSGyW41wgJY2LnVLx73HVioGBW-6G5-5ePYScA82AgrhaZNb5jFFgGS0zCvkBGUEpeSpF8XpIRpTTIqVFXh6TkxAWNJZkMCKTeZ8M75g8JRWGIWn7Ad_QJz0OG-c_kqZzm3BKjhrTBTzb9zF5ubt9nj6ks_n94_Rmltoc1JAqZq3ldcnBcq5AllIiYwXLK25qYLapaBwUL0VjRJ43ohBSSARlKolYST4ml7u7K-8-1zGOXrbBYteZHt06aAAuCi4LTiM6-YMu3Nr3MZ0GqriiUtI8UrCjrHcheGz0yrdL478jpLfa9EJHbXqrTdNSR21x52J_2QRrusab3rbhd5HF1EoqEbnrHYfRyFeLXgfbYm-xbj3aQdeu_efLD9b8fw0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1093907704</pqid></control><display><type>article</type><title>On the K best integer network flows</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Sedeño-Noda, Antonio ; Espino-Martín, Juan José</creator><creatorcontrib>Sedeño-Noda, Antonio ; Espino-Martín, Juan José</creatorcontrib><description>We address the problem of finding the K best integer solutions of a linear integer network flow problem. We design an O(f(n,m,L,U)+KmS(n,m,L)) time and O(K+m) memory space algorithm to determine the K best integer solutions, in a directed network with n nodes, m arcs, maximum absolute value cost L, and an upper bound U on arc capacities and node supplies. f(n,m,L,U) is the best time needed to solve the minimum cost flow problem in a directed network and S(n,m,L) is the best time to solve the single-source shortest path problem in a network with non-negative lengths. The introduced algorithm efficiently determines a “proper minimal cycle” by taking advantage of the relationship between the best solutions. This way, we improve the theoretical as well as practical memory space bounds of the well-known method due to Hamacher. Our computational experiments confirm this result.</description><identifier>ISSN: 0305-0548</identifier><identifier>EISSN: 1873-765X</identifier><identifier>EISSN: 0305-0548</identifier><identifier>DOI: 10.1016/j.cor.2012.08.014</identifier><identifier>CODEN: CMORAP</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Algorithms ; Applied sciences ; Combinatorial optimization ; Cost engineering ; Cost reduction ; Exact sciences and technology ; Flows in networks. Combinatorial problems ; Integer programming ; Integers ; K best integer network flow problem ; Mathematical models ; Minimum cost ; Minimum cost flow problem ; Network flow problem ; Networks ; Operational research and scientific management ; Operational research. Management science ; Operations research ; Optimization algorithms ; Shortest-path problems ; Studies</subject><ispartof>Computers &amp; operations research, 2013-02, Vol.40 (2), p.616-626</ispartof><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><rights>Copyright Pergamon Press Inc. Feb 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-92ccc3d831c33917877e22524b3ad12cfb03ad9386fa644f656767e19ab7eeb73</citedby><cites>FETCH-LOGICAL-c419t-92ccc3d831c33917877e22524b3ad12cfb03ad9386fa644f656767e19ab7eeb73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cor.2012.08.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26569796$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sedeño-Noda, Antonio</creatorcontrib><creatorcontrib>Espino-Martín, Juan José</creatorcontrib><title>On the K best integer network flows</title><title>Computers &amp; operations research</title><description>We address the problem of finding the K best integer solutions of a linear integer network flow problem. We design an O(f(n,m,L,U)+KmS(n,m,L)) time and O(K+m) memory space algorithm to determine the K best integer solutions, in a directed network with n nodes, m arcs, maximum absolute value cost L, and an upper bound U on arc capacities and node supplies. f(n,m,L,U) is the best time needed to solve the minimum cost flow problem in a directed network and S(n,m,L) is the best time to solve the single-source shortest path problem in a network with non-negative lengths. The introduced algorithm efficiently determines a “proper minimal cycle” by taking advantage of the relationship between the best solutions. This way, we improve the theoretical as well as practical memory space bounds of the well-known method due to Hamacher. Our computational experiments confirm this result.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Combinatorial optimization</subject><subject>Cost engineering</subject><subject>Cost reduction</subject><subject>Exact sciences and technology</subject><subject>Flows in networks. Combinatorial problems</subject><subject>Integer programming</subject><subject>Integers</subject><subject>K best integer network flow problem</subject><subject>Mathematical models</subject><subject>Minimum cost</subject><subject>Minimum cost flow problem</subject><subject>Network flow problem</subject><subject>Networks</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Operations research</subject><subject>Optimization algorithms</subject><subject>Shortest-path problems</subject><subject>Studies</subject><issn>0305-0548</issn><issn>1873-765X</issn><issn>0305-0548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9giVUgsCT47sWMxoYovUakLSGyW41wgJY2LnVLx73HVioGBW-6G5-5ePYScA82AgrhaZNb5jFFgGS0zCvkBGUEpeSpF8XpIRpTTIqVFXh6TkxAWNJZkMCKTeZ8M75g8JRWGIWn7Ad_QJz0OG-c_kqZzm3BKjhrTBTzb9zF5ubt9nj6ks_n94_Rmltoc1JAqZq3ldcnBcq5AllIiYwXLK25qYLapaBwUL0VjRJ43ohBSSARlKolYST4ml7u7K-8-1zGOXrbBYteZHt06aAAuCi4LTiM6-YMu3Nr3MZ0GqriiUtI8UrCjrHcheGz0yrdL478jpLfa9EJHbXqrTdNSR21x52J_2QRrusab3rbhd5HF1EoqEbnrHYfRyFeLXgfbYm-xbj3aQdeu_efLD9b8fw0</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Sedeño-Noda, Antonio</creator><creator>Espino-Martín, Juan José</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Pergamon Press Inc</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130201</creationdate><title>On the K best integer network flows</title><author>Sedeño-Noda, Antonio ; Espino-Martín, Juan José</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-92ccc3d831c33917877e22524b3ad12cfb03ad9386fa644f656767e19ab7eeb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Combinatorial optimization</topic><topic>Cost engineering</topic><topic>Cost reduction</topic><topic>Exact sciences and technology</topic><topic>Flows in networks. Combinatorial problems</topic><topic>Integer programming</topic><topic>Integers</topic><topic>K best integer network flow problem</topic><topic>Mathematical models</topic><topic>Minimum cost</topic><topic>Minimum cost flow problem</topic><topic>Network flow problem</topic><topic>Networks</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Operations research</topic><topic>Optimization algorithms</topic><topic>Shortest-path problems</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sedeño-Noda, Antonio</creatorcontrib><creatorcontrib>Espino-Martín, Juan José</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sedeño-Noda, Antonio</au><au>Espino-Martín, Juan José</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the K best integer network flows</atitle><jtitle>Computers &amp; operations research</jtitle><date>2013-02-01</date><risdate>2013</risdate><volume>40</volume><issue>2</issue><spage>616</spage><epage>626</epage><pages>616-626</pages><issn>0305-0548</issn><eissn>1873-765X</eissn><eissn>0305-0548</eissn><coden>CMORAP</coden><abstract>We address the problem of finding the K best integer solutions of a linear integer network flow problem. We design an O(f(n,m,L,U)+KmS(n,m,L)) time and O(K+m) memory space algorithm to determine the K best integer solutions, in a directed network with n nodes, m arcs, maximum absolute value cost L, and an upper bound U on arc capacities and node supplies. f(n,m,L,U) is the best time needed to solve the minimum cost flow problem in a directed network and S(n,m,L) is the best time to solve the single-source shortest path problem in a network with non-negative lengths. The introduced algorithm efficiently determines a “proper minimal cycle” by taking advantage of the relationship between the best solutions. This way, we improve the theoretical as well as practical memory space bounds of the well-known method due to Hamacher. Our computational experiments confirm this result.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cor.2012.08.014</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0305-0548
ispartof Computers & operations research, 2013-02, Vol.40 (2), p.616-626
issn 0305-0548
1873-765X
0305-0548
language eng
recordid cdi_proquest_miscellaneous_1136537530
source ScienceDirect Journals (5 years ago - present)
subjects Algorithms
Applied sciences
Combinatorial optimization
Cost engineering
Cost reduction
Exact sciences and technology
Flows in networks. Combinatorial problems
Integer programming
Integers
K best integer network flow problem
Mathematical models
Minimum cost
Minimum cost flow problem
Network flow problem
Networks
Operational research and scientific management
Operational research. Management science
Operations research
Optimization algorithms
Shortest-path problems
Studies
title On the K best integer network flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T02%3A44%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20K%20best%20integer%20network%20flows&rft.jtitle=Computers%20&%20operations%20research&rft.au=Sede%C3%B1o-Noda,%20Antonio&rft.date=2013-02-01&rft.volume=40&rft.issue=2&rft.spage=616&rft.epage=626&rft.pages=616-626&rft.issn=0305-0548&rft.eissn=1873-765X&rft.coden=CMORAP&rft_id=info:doi/10.1016/j.cor.2012.08.014&rft_dat=%3Cproquest_cross%3E1136537530%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1093907704&rft_id=info:pmid/&rft_els_id=S0305054812001797&rfr_iscdi=true