On the K best integer network flows
We address the problem of finding the K best integer solutions of a linear integer network flow problem. We design an O(f(n,m,L,U)+KmS(n,m,L)) time and O(K+m) memory space algorithm to determine the K best integer solutions, in a directed network with n nodes, m arcs, maximum absolute value cost L,...
Gespeichert in:
Veröffentlicht in: | Computers & operations research 2013-02, Vol.40 (2), p.616-626 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We address the problem of finding the K best integer solutions of a linear integer network flow problem. We design an O(f(n,m,L,U)+KmS(n,m,L)) time and O(K+m) memory space algorithm to determine the K best integer solutions, in a directed network with n nodes, m arcs, maximum absolute value cost L, and an upper bound U on arc capacities and node supplies. f(n,m,L,U) is the best time needed to solve the minimum cost flow problem in a directed network and S(n,m,L) is the best time to solve the single-source shortest path problem in a network with non-negative lengths. The introduced algorithm efficiently determines a “proper minimal cycle” by taking advantage of the relationship between the best solutions. This way, we improve the theoretical as well as practical memory space bounds of the well-known method due to Hamacher. Our computational experiments confirm this result. |
---|---|
ISSN: | 0305-0548 1873-765X 0305-0548 |
DOI: | 10.1016/j.cor.2012.08.014 |