Neural Net Based Optimization of Wet Thermal Lateral Oxidation Rates

Data is available from experimental significant study which discusses vertical -cavity surface -emitting laser (VCSEL) performance that has been realized by employing wet thermal oxidation of selected AIxGa 1-x layers in the device structure to form the current apertures and to provide the lateral i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors & transducers 2011-10, Vol.133 (10), p.8-8
Hauptverfasser: "Moh'd Sami" Ashhab, Shaban, Nabeel Abo, Olimat, Abdulla N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 10
container_start_page 8
container_title Sensors & transducers
container_volume 133
creator "Moh'd Sami" Ashhab
Shaban, Nabeel Abo
Olimat, Abdulla N
description Data is available from experimental significant study which discusses vertical -cavity surface -emitting laser (VCSEL) performance that has been realized by employing wet thermal oxidation of selected AIxGa 1-x layers in the device structure to form the current apertures and to provide the lateral index guiding for the lasing mode [1,3]. [...] the stability of bubbler temperature, gas flow calibration and good control should be the minimum requirements to insure repeatable and uniform oxidation for VCSEL fabrication. 3. The neural net based optimizer objective in the lateral oxidation process is to predict the regulating temperature and the percentage of AlAs mole fraction which will match the desired target value of the lateral oxidation rate (µm/min).
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1136517756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1136517756</sourcerecordid><originalsourceid>FETCH-LOGICAL-p130t-d8ad6a523c83240a3c60d91b8c4170305ce0a3a6bc757154676121847c58631c3</originalsourceid><addsrcrecordid>eNpdzktLxDAUBeAgCpZx_kNx5aZwb9KbpEsdn1CmICMuSybNYIe-bFIQf72RceXqwjkfh3vGElRcZpSr4pwlXIDMNCFdsrX3RwBAUKrgkLD7rVtm06VbF9I7412TVlNo-_bbhHYc0vGQvsdm9-HmPqrSBPerq6-2OYHXmPgrdnEwnXfrv7tib48Pu81zVlZPL5vbMptQQMgabRppiAurBc_BCCuhKXCvbY4KBJB1MTRybxUppFwqiRx1rixpKdCKFbs57U7z-Lk4H-q-9dZ1nRncuPgaUUhCpUhGev2PHsdlHuJ3dQGkSWhZiB_cZVQE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>905853869</pqid></control><display><type>article</type><title>Neural Net Based Optimization of Wet Thermal Lateral Oxidation Rates</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>"Moh'd Sami" Ashhab ; Shaban, Nabeel Abo ; Olimat, Abdulla N</creator><creatorcontrib>"Moh'd Sami" Ashhab ; Shaban, Nabeel Abo ; Olimat, Abdulla N</creatorcontrib><description>Data is available from experimental significant study which discusses vertical -cavity surface -emitting laser (VCSEL) performance that has been realized by employing wet thermal oxidation of selected AIxGa 1-x layers in the device structure to form the current apertures and to provide the lateral index guiding for the lasing mode [1,3]. [...] the stability of bubbler temperature, gas flow calibration and good control should be the minimum requirements to insure repeatable and uniform oxidation for VCSEL fabrication. 3. The neural net based optimizer objective in the lateral oxidation process is to predict the regulating temperature and the percentage of AlAs mole fraction which will match the desired target value of the lateral oxidation rate (µm/min).</description><identifier>ISSN: 2306-8515</identifier><identifier>ISSN: 1726-5479</identifier><identifier>EISSN: 1726-5479</identifier><language>eng</language><publisher>Toronto: IFSA Publishing, S.L</publisher><subject>Algorithms ; Aluminum gallium arsenides ; Computer simulation ; Gas flow ; Mathematical models ; Moles ; Neural networks ; Neurons ; Optimization ; Oxidation ; Oxidation rate ; Studies ; Transducers</subject><ispartof>Sensors &amp; transducers, 2011-10, Vol.133 (10), p.8-8</ispartof><rights>Copyright International Frequency Sensor Association Oct 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>"Moh'd Sami" Ashhab</creatorcontrib><creatorcontrib>Shaban, Nabeel Abo</creatorcontrib><creatorcontrib>Olimat, Abdulla N</creatorcontrib><title>Neural Net Based Optimization of Wet Thermal Lateral Oxidation Rates</title><title>Sensors &amp; transducers</title><description>Data is available from experimental significant study which discusses vertical -cavity surface -emitting laser (VCSEL) performance that has been realized by employing wet thermal oxidation of selected AIxGa 1-x layers in the device structure to form the current apertures and to provide the lateral index guiding for the lasing mode [1,3]. [...] the stability of bubbler temperature, gas flow calibration and good control should be the minimum requirements to insure repeatable and uniform oxidation for VCSEL fabrication. 3. The neural net based optimizer objective in the lateral oxidation process is to predict the regulating temperature and the percentage of AlAs mole fraction which will match the desired target value of the lateral oxidation rate (µm/min).</description><subject>Algorithms</subject><subject>Aluminum gallium arsenides</subject><subject>Computer simulation</subject><subject>Gas flow</subject><subject>Mathematical models</subject><subject>Moles</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Optimization</subject><subject>Oxidation</subject><subject>Oxidation rate</subject><subject>Studies</subject><subject>Transducers</subject><issn>2306-8515</issn><issn>1726-5479</issn><issn>1726-5479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdzktLxDAUBeAgCpZx_kNx5aZwb9KbpEsdn1CmICMuSybNYIe-bFIQf72RceXqwjkfh3vGElRcZpSr4pwlXIDMNCFdsrX3RwBAUKrgkLD7rVtm06VbF9I7412TVlNo-_bbhHYc0vGQvsdm9-HmPqrSBPerq6-2OYHXmPgrdnEwnXfrv7tib48Pu81zVlZPL5vbMptQQMgabRppiAurBc_BCCuhKXCvbY4KBJB1MTRybxUppFwqiRx1rixpKdCKFbs57U7z-Lk4H-q-9dZ1nRncuPgaUUhCpUhGev2PHsdlHuJ3dQGkSWhZiB_cZVQE</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>"Moh'd Sami" Ashhab</creator><creator>Shaban, Nabeel Abo</creator><creator>Olimat, Abdulla N</creator><general>IFSA Publishing, S.L</general><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SP</scope><scope>7XB</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CLZPN</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>M0N</scope><scope>M2P</scope><scope>M2T</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7QF</scope><scope>7SE</scope><scope>JG9</scope></search><sort><creationdate>20111001</creationdate><title>Neural Net Based Optimization of Wet Thermal Lateral Oxidation Rates</title><author>"Moh'd Sami" Ashhab ; Shaban, Nabeel Abo ; Olimat, Abdulla N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p130t-d8ad6a523c83240a3c60d91b8c4170305ce0a3a6bc757154676121847c58631c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Aluminum gallium arsenides</topic><topic>Computer simulation</topic><topic>Gas flow</topic><topic>Mathematical models</topic><topic>Moles</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Optimization</topic><topic>Oxidation</topic><topic>Oxidation rate</topic><topic>Studies</topic><topic>Transducers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>"Moh'd Sami" Ashhab</creatorcontrib><creatorcontrib>Shaban, Nabeel Abo</creatorcontrib><creatorcontrib>Olimat, Abdulla N</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Latin America &amp; Iberia Database</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Aluminium Industry Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Materials Research Database</collection><jtitle>Sensors &amp; transducers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>"Moh'd Sami" Ashhab</au><au>Shaban, Nabeel Abo</au><au>Olimat, Abdulla N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural Net Based Optimization of Wet Thermal Lateral Oxidation Rates</atitle><jtitle>Sensors &amp; transducers</jtitle><date>2011-10-01</date><risdate>2011</risdate><volume>133</volume><issue>10</issue><spage>8</spage><epage>8</epage><pages>8-8</pages><issn>2306-8515</issn><issn>1726-5479</issn><eissn>1726-5479</eissn><abstract>Data is available from experimental significant study which discusses vertical -cavity surface -emitting laser (VCSEL) performance that has been realized by employing wet thermal oxidation of selected AIxGa 1-x layers in the device structure to form the current apertures and to provide the lateral index guiding for the lasing mode [1,3]. [...] the stability of bubbler temperature, gas flow calibration and good control should be the minimum requirements to insure repeatable and uniform oxidation for VCSEL fabrication. 3. The neural net based optimizer objective in the lateral oxidation process is to predict the regulating temperature and the percentage of AlAs mole fraction which will match the desired target value of the lateral oxidation rate (µm/min).</abstract><cop>Toronto</cop><pub>IFSA Publishing, S.L</pub><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2306-8515
ispartof Sensors & transducers, 2011-10, Vol.133 (10), p.8-8
issn 2306-8515
1726-5479
1726-5479
language eng
recordid cdi_proquest_miscellaneous_1136517756
source EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Algorithms
Aluminum gallium arsenides
Computer simulation
Gas flow
Mathematical models
Moles
Neural networks
Neurons
Optimization
Oxidation
Oxidation rate
Studies
Transducers
title Neural Net Based Optimization of Wet Thermal Lateral Oxidation Rates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T15%3A57%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20Net%20Based%20Optimization%20of%20Wet%20Thermal%20Lateral%20Oxidation%20Rates&rft.jtitle=Sensors%20&%20transducers&rft.au=%22Moh'd%20Sami%22%20Ashhab&rft.date=2011-10-01&rft.volume=133&rft.issue=10&rft.spage=8&rft.epage=8&rft.pages=8-8&rft.issn=2306-8515&rft.eissn=1726-5479&rft_id=info:doi/&rft_dat=%3Cproquest%3E1136517756%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=905853869&rft_id=info:pmid/&rfr_iscdi=true