Carrier multiplication between interacting nanocrystals for fostering silicon-based photovoltaics
The conversion of solar radiation into electric current with high efficiency is one of the most important topics of modern scientific research, as it holds great potential as a source of clean and renewable energy. Exploitation of interaction between nanocrystals seems to be a promising route to the...
Gespeichert in:
Veröffentlicht in: | Nature photonics 2012-10, Vol.6 (10), p.672-679 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The conversion of solar radiation into electric current with high efficiency is one of the most important topics of modern scientific research, as it holds great potential as a source of clean and renewable energy. Exploitation of interaction between nanocrystals seems to be a promising route to the establishment of third-generation photovoltaics. Here, we adopt a fully
ab initio
scheme to estimate the role of nanoparticle interplay in the carrier multiplication dynamics of interacting silicon nanocrystals. Energy and charge transfer-based carrier multiplication events are studied as a function of nanocrystal separation, demonstrating the benefits induced by the wavefunction sharing regime. We prove the relevance of these recombinative mechanisms for photovoltaic applications in the case of silicon nanocrystals arranged in dense arrays, quantifying at an atomic scale which conditions maximize the outcome.
Carrier multiplication is a carrier-relaxation process that results in the generation of multiple electron–hole pairs after the absorption of a single photon. Researchers have now studied the role of nanoparticle interplay on the carrier-multiplication dynamics of two interacting silicon nanocrystals for photovoltaic applications. |
---|---|
ISSN: | 1749-4885 1749-4893 |
DOI: | 10.1038/nphoton.2012.206 |