Performance of graphite nanoplatelet/silicone composites as thermal interface adhesives
Graphite nanoplatelets (GNP)/silicone composites are potential thermal interface materials due to their high thermal conductivity and compliance. In this study, performance as thermal interface materials is studied by measuring thermal contact resistance. The effect of surface roughness, particle si...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2012-10, Vol.23 (10), p.1855-1863 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Graphite nanoplatelets (GNP)/silicone composites are potential thermal interface materials due to their high thermal conductivity and compliance. In this study, performance as thermal interface materials is studied by measuring thermal contact resistance. The effect of surface roughness, particle size of GNPs, wt% GNPs, temperature and applied pressure on the thermal contact resistance of the composite coatings was determined. The GNP/silicone coating performed much better on rough surfaces than on smooth surfaces. The composite coating consisting of large GNPs is more effective than small GNPs probably due to the two times higher thermal conductivity of the former. The thermal contact resistance of the GNP/silicone composite increased by ~3–10% with an increase of temperature but remained unaffected by an increase of pressure. The comparison of GNP/silicone composite coatings with GNP-based thermal pastes showed that the former perform much better in thick bond lines. |
---|---|
ISSN: | 0957-4522 1573-482X |
DOI: | 10.1007/s10854-012-0674-0 |