Cycloaliphatic epoxy resin modified by two kinds of oligo-fluorosiloxanes for potential application in light-emitting diode (LED) encapsulation

Oligo-fluorosiloxane (DFOS) and epoxy-containing oligo-fluorosiloxane (DFEHOS) were synthesized by the hydrolytic condensation reaction to modify 3, 4-epoxycyclohexylmethyl-3, 4-epoxycyclohexanecarboxylate (ERL-4221) for potential application in LED packaging. The chemical structures of DFOS and DFE...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of polymer research 2012-08, Vol.19 (8), p.1-10, Article 9923
Hauptverfasser: Gao, Nan, Liu, WeiQu, Ma, SongQi, Tang, Chunyi, Yan, ZhenLong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Oligo-fluorosiloxane (DFOS) and epoxy-containing oligo-fluorosiloxane (DFEHOS) were synthesized by the hydrolytic condensation reaction to modify 3, 4-epoxycyclohexylmethyl-3, 4-epoxycyclohexanecarboxylate (ERL-4221) for potential application in LED packaging. The chemical structures of DFOS and DFEHOS were characterized by Fourier transform infrared (FT-IR), 29 Si nuclear magnetic resonance ( 29 Si NMR), and gel permeation chromatography (GPC). The thermal behavior, mechanical properties, morphologies of impact fracture surfaces, surface wettability and absorbency of the modified epoxy resins were examined by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), tensile and impact testing, scanning electron microscopy (SEM), and contact angle measurement, respectively. The experimental results indicated that the contact angles, surface energies and water absorption ratios of the modified epoxy resins were effectively improved by the introduction of oligo-fluorosiloxanes. Compared to neat epoxy resin, the thermal stabilities of DFEHOS-modified epoxy resins were basically kept, and that of DFOS-modified epoxy resins were slightly depressed with the increasing content of modifiers. As the additive quantity of modifiers was about 5pph to 15pph relative to ERL-4221, good thermal stability, fracture toughness and surface hydrophobicity of the modified epoxy resin was exhibited, and the cured DFEHOS-10 that embraced the relatively optimum comprehensive property was possible for LED encapsulation. Moreover, the reactable groups formed during hydrolytic condensation in DFOS and DFEHOS made good compatibilities between the modifiers and the epoxy matrix.
ISSN:1022-9760
1572-8935
DOI:10.1007/s10965-012-9923-4