Evolutionary computation and agent-based modeling: biologically-inspired approaches for understanding complex social systems

Computational social science in general, and social agent-based modeling (ABM) simulation in particular, are challenged by modeling and analyzing complex adaptive social systems with emergent properties that are hard to understand in terms of components, even when the organization of component agent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational and mathematical organization theory 2012-09, Vol.18 (3), p.356-373
Hauptverfasser: Cioffi-Revilla, Claudio, De Jong, Kenneth, Bassett, Jeffrey K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Computational social science in general, and social agent-based modeling (ABM) simulation in particular, are challenged by modeling and analyzing complex adaptive social systems with emergent properties that are hard to understand in terms of components, even when the organization of component agents is know. Evolutionary computation (EC) is a mature field that provides a bio-inspired approach and a suite of techniques that are applicable to and provide new insights on complex adaptive social systems. This paper demonstrates a combined EC-ABM approach illustrated through the RebeLand model of a simple but complete polity system. Results highlight tax rates and frequency of public issue that stress society as significant features in phase transitions between stable and unstable governance regimes. These initial results suggest further applications of EC to ABM in terms of multi-population models with heterogeneous agents, multi-objective optimization, dynamic environments, and evolving executable objects for modeling social change.
ISSN:1381-298X
1572-9346
DOI:10.1007/s10588-012-9129-7