Effect of Electromagnetic Ruler Braking (EMBr) on Transient Turbulent Flow in Continuous Slab Casting using Large Eddy Simulations
Static electromagnetic braking (EMBr) fields affect greatly the turbulent flow pattern in steel continuous casting, which leads to potential benefits such as decreasing flow instability, surface defects, and inclusion entrapment if applied correctly. To gain a fundamental understanding of how EMBr a...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. B, Process metallurgy and materials processing science Process metallurgy and materials processing science, 2012-06, Vol.43 (3), p.532-553 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Static electromagnetic braking (EMBr) fields affect greatly the turbulent flow pattern in steel continuous casting, which leads to potential benefits such as decreasing flow instability, surface defects, and inclusion entrapment if applied correctly. To gain a fundamental understanding of how EMBr affects transient turbulent flow, the current work applies large eddy simulations (LES) to investigate the effect of three EMBr ruler brake configurations on transient turbulent flow through the bifurcated nozzle and mold of a liquid-metal GaInSn model of a typical steel slab-casting process, but with deep nozzle submergence and insulated walls with no solidifying shell. The LES calculations are performed using an in-house graphic-processing-unit-based computational-fluid-dynamics code (LES-CU-FLOW) on a mesh of ~7 million brick cells. The LES model is validated first via ultrasonic velocimetry measurements in this system. It is then applied to quantify the mean and instantaneous flow structures, Reynolds stresses, turbulent kinetic energy and its budgets, and proper orthogonal modes of four cases. Positioning the strongest part of the ruler magnetic field over the nozzle bottom suppresses turbulence in this region, thus reducing nozzle well swirl and its alternation. This process leads to strong and focused jets entering the mold cavity making large-scale and low-frequency ( |
---|---|
ISSN: | 1073-5615 1543-1916 |
DOI: | 10.1007/s11663-012-9634-6 |