Morphology and mechanical property changes in compatibilized high density polyethylene/polyamide 6 nanocomposites induced by carbon nanotubes
Addition of carbon nanotubes to immiscible polymer blends with co‐continuous morphology features to improve the electrical conductivity has attracted much attention in recent years; however, less attention has been paid to the effect of carbon nanotubes on the morphology and corresponding physical p...
Gespeichert in:
Veröffentlicht in: | Polymer international 2012-08, Vol.61 (8), p.1334-1343 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Addition of carbon nanotubes to immiscible polymer blends with co‐continuous morphology features to improve the electrical conductivity has attracted much attention in recent years; however, less attention has been paid to the effect of carbon nanotubes on the morphology and corresponding physical properties of immiscible polymer blends with typical sea‐island morphology. In this work, therefore, functionalized multiwalled carbon nanotubes (FMWCNTs) were introduced into an immiscible high density polyethylene/polyamide 6 (HDPE/PA6) blend which was compatibilized by maleic anhydride grafted HDPE (HDPE‐MA). The distribution of FMWCNTs and the phase morphologies of the nanocomposites were characterized using scanning electron microscopy and transmission electron microscopy. The crystallization and melting behaviors of the components were analyzed by differential scanning calorimetry, which is thought to be favorable for an understanding of the distribution of FMWCNTs. It is interesting to observe that the morphology of PA6 particles is very dependent on the method of preparation of the nanocomposites. Correspondingly, FMWCNTs exhibit an apparent reinforcement effect and/or an excellent toughening effect for the compatibilized HDPE/PA6 blend, depending upon their distribution state and the variation of PA6 morphology. This work proves that FMWCNTs have a potential application in further improving the mechanical properties of compatibilized immiscible polymer blends. Copyright © 2012 Society of Chemical Industry
The sample preparation ways influences both the selective distribution of CNTs and morphologies of PA6 particles. Consequently, CNTs exhibit reinforcement and/or toughening effects for the compatibilized HDPE/PA6 blend. |
---|---|
ISSN: | 0959-8103 1097-0126 |
DOI: | 10.1002/pi.4213 |