Monotonicity and asymptotics of zeros of Sobolev type orthogonal polynomials: A general case

We investigate the location, monotonicity, and asymptotics of the zeros of the polynomials orthogonal with respect to the Sobolev type inner product〈p,q〉λ,c,j=∫abp(x)q(x)dμ(x)+λp(j)(c)q(j)(c), where μ is a positive Borel measure, λ⩾0, j∈Z+, and c∉(a,b). We prove that these zeros are monotonic functi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied numerical mathematics 2012-11, Vol.62 (11), p.1663-1671
Hauptverfasser: Castillo, Kenier, Mello, Mirela V., Rafaeli, Fernando R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1671
container_issue 11
container_start_page 1663
container_title Applied numerical mathematics
container_volume 62
creator Castillo, Kenier
Mello, Mirela V.
Rafaeli, Fernando R.
description We investigate the location, monotonicity, and asymptotics of the zeros of the polynomials orthogonal with respect to the Sobolev type inner product〈p,q〉λ,c,j=∫abp(x)q(x)dμ(x)+λp(j)(c)q(j)(c), where μ is a positive Borel measure, λ⩾0, j∈Z+, and c∉(a,b). We prove that these zeros are monotonic function of the parameter λ and establish their asymptotics when either λ converges to zero or to infinity. The precise location of the extreme zeros is also analyzed.
doi_str_mv 10.1016/j.apnum.2012.05.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1136360666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168927412000773</els_id><sourcerecordid>1136360666</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-c5f7ea3eab2588046847e70210b2eed81a3bff77ef8aae46e1ff1d0bd3c392083</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOD5-gZss3bTeNG3aEVyI-ALFhboTQprejBnapCYZof56q-Pa1T0czrlwPkJOGOQMmDhb52p0myEvgBU5VDmA2CEL1tQ8q0oBu2Qxp5psWdTlPjmIcQ0AVVXCgrw9eueTd1bbNFHlOqriNIzJJ6sj9YZ-YfC_4tm3vsdPmqYRqQ_p3a-8Uz0dfT85P1jVx3N6SVfoMMy2VhGPyJ6ZbTz-u4fk9eb65eoue3i6vb-6fMg05yJlujI1Ko6qLaqmgVI0ZY01FAzaArFrmOKtMXWNplEKS4HMGNZB23HNlwU0_JCcbv-OwX9sMCY52Kix75VDv4mSMS64ACHEHOXbqJ5nxYBGjsEOKkySgfxhKdfyl6X8YSmhkjPLuXWxbeG84tNikFFbdBo7G1An2Xn7b_8bJTyANA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1136360666</pqid></control><display><type>article</type><title>Monotonicity and asymptotics of zeros of Sobolev type orthogonal polynomials: A general case</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Castillo, Kenier ; Mello, Mirela V. ; Rafaeli, Fernando R.</creator><creatorcontrib>Castillo, Kenier ; Mello, Mirela V. ; Rafaeli, Fernando R.</creatorcontrib><description>We investigate the location, monotonicity, and asymptotics of the zeros of the polynomials orthogonal with respect to the Sobolev type inner product〈p,q〉λ,c,j=∫abp(x)q(x)dμ(x)+λp(j)(c)q(j)(c), where μ is a positive Borel measure, λ⩾0, j∈Z+, and c∉(a,b). We prove that these zeros are monotonic function of the parameter λ and establish their asymptotics when either λ converges to zero or to infinity. The precise location of the extreme zeros is also analyzed.</description><identifier>ISSN: 0168-9274</identifier><identifier>EISSN: 1873-5460</identifier><identifier>DOI: 10.1016/j.apnum.2012.05.006</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Asymptotic behavior ; Asymptotic properties ; Infinity ; Mathematical analysis ; Mathematical models ; Monotonicity ; Orthogonal polynomials ; Position (location) ; Sobolev type inner product ; Zeros</subject><ispartof>Applied numerical mathematics, 2012-11, Vol.62 (11), p.1663-1671</ispartof><rights>2012 IMACS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-c5f7ea3eab2588046847e70210b2eed81a3bff77ef8aae46e1ff1d0bd3c392083</citedby><cites>FETCH-LOGICAL-c336t-c5f7ea3eab2588046847e70210b2eed81a3bff77ef8aae46e1ff1d0bd3c392083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0168927412000773$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Castillo, Kenier</creatorcontrib><creatorcontrib>Mello, Mirela V.</creatorcontrib><creatorcontrib>Rafaeli, Fernando R.</creatorcontrib><title>Monotonicity and asymptotics of zeros of Sobolev type orthogonal polynomials: A general case</title><title>Applied numerical mathematics</title><description>We investigate the location, monotonicity, and asymptotics of the zeros of the polynomials orthogonal with respect to the Sobolev type inner product〈p,q〉λ,c,j=∫abp(x)q(x)dμ(x)+λp(j)(c)q(j)(c), where μ is a positive Borel measure, λ⩾0, j∈Z+, and c∉(a,b). We prove that these zeros are monotonic function of the parameter λ and establish their asymptotics when either λ converges to zero or to infinity. The precise location of the extreme zeros is also analyzed.</description><subject>Asymptotic behavior</subject><subject>Asymptotic properties</subject><subject>Infinity</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Monotonicity</subject><subject>Orthogonal polynomials</subject><subject>Position (location)</subject><subject>Sobolev type inner product</subject><subject>Zeros</subject><issn>0168-9274</issn><issn>1873-5460</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOD5-gZss3bTeNG3aEVyI-ALFhboTQprejBnapCYZof56q-Pa1T0czrlwPkJOGOQMmDhb52p0myEvgBU5VDmA2CEL1tQ8q0oBu2Qxp5psWdTlPjmIcQ0AVVXCgrw9eueTd1bbNFHlOqriNIzJJ6sj9YZ-YfC_4tm3vsdPmqYRqQ_p3a-8Uz0dfT85P1jVx3N6SVfoMMy2VhGPyJ6ZbTz-u4fk9eb65eoue3i6vb-6fMg05yJlujI1Ko6qLaqmgVI0ZY01FAzaArFrmOKtMXWNplEKS4HMGNZB23HNlwU0_JCcbv-OwX9sMCY52Kix75VDv4mSMS64ACHEHOXbqJ5nxYBGjsEOKkySgfxhKdfyl6X8YSmhkjPLuXWxbeG84tNikFFbdBo7G1An2Xn7b_8bJTyANA</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Castillo, Kenier</creator><creator>Mello, Mirela V.</creator><creator>Rafaeli, Fernando R.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201211</creationdate><title>Monotonicity and asymptotics of zeros of Sobolev type orthogonal polynomials: A general case</title><author>Castillo, Kenier ; Mello, Mirela V. ; Rafaeli, Fernando R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-c5f7ea3eab2588046847e70210b2eed81a3bff77ef8aae46e1ff1d0bd3c392083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Asymptotic behavior</topic><topic>Asymptotic properties</topic><topic>Infinity</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Monotonicity</topic><topic>Orthogonal polynomials</topic><topic>Position (location)</topic><topic>Sobolev type inner product</topic><topic>Zeros</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castillo, Kenier</creatorcontrib><creatorcontrib>Mello, Mirela V.</creatorcontrib><creatorcontrib>Rafaeli, Fernando R.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied numerical mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castillo, Kenier</au><au>Mello, Mirela V.</au><au>Rafaeli, Fernando R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monotonicity and asymptotics of zeros of Sobolev type orthogonal polynomials: A general case</atitle><jtitle>Applied numerical mathematics</jtitle><date>2012-11</date><risdate>2012</risdate><volume>62</volume><issue>11</issue><spage>1663</spage><epage>1671</epage><pages>1663-1671</pages><issn>0168-9274</issn><eissn>1873-5460</eissn><abstract>We investigate the location, monotonicity, and asymptotics of the zeros of the polynomials orthogonal with respect to the Sobolev type inner product〈p,q〉λ,c,j=∫abp(x)q(x)dμ(x)+λp(j)(c)q(j)(c), where μ is a positive Borel measure, λ⩾0, j∈Z+, and c∉(a,b). We prove that these zeros are monotonic function of the parameter λ and establish their asymptotics when either λ converges to zero or to infinity. The precise location of the extreme zeros is also analyzed.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.apnum.2012.05.006</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0168-9274
ispartof Applied numerical mathematics, 2012-11, Vol.62 (11), p.1663-1671
issn 0168-9274
1873-5460
language eng
recordid cdi_proquest_miscellaneous_1136360666
source Elsevier ScienceDirect Journals Complete
subjects Asymptotic behavior
Asymptotic properties
Infinity
Mathematical analysis
Mathematical models
Monotonicity
Orthogonal polynomials
Position (location)
Sobolev type inner product
Zeros
title Monotonicity and asymptotics of zeros of Sobolev type orthogonal polynomials: A general case
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T05%3A32%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monotonicity%20and%20asymptotics%20of%20zeros%20of%20Sobolev%20type%20orthogonal%20polynomials:%20A%20general%20case&rft.jtitle=Applied%20numerical%20mathematics&rft.au=Castillo,%20Kenier&rft.date=2012-11&rft.volume=62&rft.issue=11&rft.spage=1663&rft.epage=1671&rft.pages=1663-1671&rft.issn=0168-9274&rft.eissn=1873-5460&rft_id=info:doi/10.1016/j.apnum.2012.05.006&rft_dat=%3Cproquest_cross%3E1136360666%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1136360666&rft_id=info:pmid/&rft_els_id=S0168927412000773&rfr_iscdi=true