Monotonicity and asymptotics of zeros of Sobolev type orthogonal polynomials: A general case
We investigate the location, monotonicity, and asymptotics of the zeros of the polynomials orthogonal with respect to the Sobolev type inner product〈p,q〉λ,c,j=∫abp(x)q(x)dμ(x)+λp(j)(c)q(j)(c), where μ is a positive Borel measure, λ⩾0, j∈Z+, and c∉(a,b). We prove that these zeros are monotonic functi...
Gespeichert in:
Veröffentlicht in: | Applied numerical mathematics 2012-11, Vol.62 (11), p.1663-1671 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1671 |
---|---|
container_issue | 11 |
container_start_page | 1663 |
container_title | Applied numerical mathematics |
container_volume | 62 |
creator | Castillo, Kenier Mello, Mirela V. Rafaeli, Fernando R. |
description | We investigate the location, monotonicity, and asymptotics of the zeros of the polynomials orthogonal with respect to the Sobolev type inner product〈p,q〉λ,c,j=∫abp(x)q(x)dμ(x)+λp(j)(c)q(j)(c), where μ is a positive Borel measure, λ⩾0, j∈Z+, and c∉(a,b). We prove that these zeros are monotonic function of the parameter λ and establish their asymptotics when either λ converges to zero or to infinity. The precise location of the extreme zeros is also analyzed. |
doi_str_mv | 10.1016/j.apnum.2012.05.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1136360666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168927412000773</els_id><sourcerecordid>1136360666</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-c5f7ea3eab2588046847e70210b2eed81a3bff77ef8aae46e1ff1d0bd3c392083</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOD5-gZss3bTeNG3aEVyI-ALFhboTQprejBnapCYZof56q-Pa1T0czrlwPkJOGOQMmDhb52p0myEvgBU5VDmA2CEL1tQ8q0oBu2Qxp5psWdTlPjmIcQ0AVVXCgrw9eueTd1bbNFHlOqriNIzJJ6sj9YZ-YfC_4tm3vsdPmqYRqQ_p3a-8Uz0dfT85P1jVx3N6SVfoMMy2VhGPyJ6ZbTz-u4fk9eb65eoue3i6vb-6fMg05yJlujI1Ko6qLaqmgVI0ZY01FAzaArFrmOKtMXWNplEKS4HMGNZB23HNlwU0_JCcbv-OwX9sMCY52Kix75VDv4mSMS64ACHEHOXbqJ5nxYBGjsEOKkySgfxhKdfyl6X8YSmhkjPLuXWxbeG84tNikFFbdBo7G1An2Xn7b_8bJTyANA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1136360666</pqid></control><display><type>article</type><title>Monotonicity and asymptotics of zeros of Sobolev type orthogonal polynomials: A general case</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Castillo, Kenier ; Mello, Mirela V. ; Rafaeli, Fernando R.</creator><creatorcontrib>Castillo, Kenier ; Mello, Mirela V. ; Rafaeli, Fernando R.</creatorcontrib><description>We investigate the location, monotonicity, and asymptotics of the zeros of the polynomials orthogonal with respect to the Sobolev type inner product〈p,q〉λ,c,j=∫abp(x)q(x)dμ(x)+λp(j)(c)q(j)(c), where μ is a positive Borel measure, λ⩾0, j∈Z+, and c∉(a,b). We prove that these zeros are monotonic function of the parameter λ and establish their asymptotics when either λ converges to zero or to infinity. The precise location of the extreme zeros is also analyzed.</description><identifier>ISSN: 0168-9274</identifier><identifier>EISSN: 1873-5460</identifier><identifier>DOI: 10.1016/j.apnum.2012.05.006</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Asymptotic behavior ; Asymptotic properties ; Infinity ; Mathematical analysis ; Mathematical models ; Monotonicity ; Orthogonal polynomials ; Position (location) ; Sobolev type inner product ; Zeros</subject><ispartof>Applied numerical mathematics, 2012-11, Vol.62 (11), p.1663-1671</ispartof><rights>2012 IMACS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-c5f7ea3eab2588046847e70210b2eed81a3bff77ef8aae46e1ff1d0bd3c392083</citedby><cites>FETCH-LOGICAL-c336t-c5f7ea3eab2588046847e70210b2eed81a3bff77ef8aae46e1ff1d0bd3c392083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0168927412000773$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Castillo, Kenier</creatorcontrib><creatorcontrib>Mello, Mirela V.</creatorcontrib><creatorcontrib>Rafaeli, Fernando R.</creatorcontrib><title>Monotonicity and asymptotics of zeros of Sobolev type orthogonal polynomials: A general case</title><title>Applied numerical mathematics</title><description>We investigate the location, monotonicity, and asymptotics of the zeros of the polynomials orthogonal with respect to the Sobolev type inner product〈p,q〉λ,c,j=∫abp(x)q(x)dμ(x)+λp(j)(c)q(j)(c), where μ is a positive Borel measure, λ⩾0, j∈Z+, and c∉(a,b). We prove that these zeros are monotonic function of the parameter λ and establish their asymptotics when either λ converges to zero or to infinity. The precise location of the extreme zeros is also analyzed.</description><subject>Asymptotic behavior</subject><subject>Asymptotic properties</subject><subject>Infinity</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Monotonicity</subject><subject>Orthogonal polynomials</subject><subject>Position (location)</subject><subject>Sobolev type inner product</subject><subject>Zeros</subject><issn>0168-9274</issn><issn>1873-5460</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOD5-gZss3bTeNG3aEVyI-ALFhboTQprejBnapCYZof56q-Pa1T0czrlwPkJOGOQMmDhb52p0myEvgBU5VDmA2CEL1tQ8q0oBu2Qxp5psWdTlPjmIcQ0AVVXCgrw9eueTd1bbNFHlOqriNIzJJ6sj9YZ-YfC_4tm3vsdPmqYRqQ_p3a-8Uz0dfT85P1jVx3N6SVfoMMy2VhGPyJ6ZbTz-u4fk9eb65eoue3i6vb-6fMg05yJlujI1Ko6qLaqmgVI0ZY01FAzaArFrmOKtMXWNplEKS4HMGNZB23HNlwU0_JCcbv-OwX9sMCY52Kix75VDv4mSMS64ACHEHOXbqJ5nxYBGjsEOKkySgfxhKdfyl6X8YSmhkjPLuXWxbeG84tNikFFbdBo7G1An2Xn7b_8bJTyANA</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Castillo, Kenier</creator><creator>Mello, Mirela V.</creator><creator>Rafaeli, Fernando R.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201211</creationdate><title>Monotonicity and asymptotics of zeros of Sobolev type orthogonal polynomials: A general case</title><author>Castillo, Kenier ; Mello, Mirela V. ; Rafaeli, Fernando R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-c5f7ea3eab2588046847e70210b2eed81a3bff77ef8aae46e1ff1d0bd3c392083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Asymptotic behavior</topic><topic>Asymptotic properties</topic><topic>Infinity</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Monotonicity</topic><topic>Orthogonal polynomials</topic><topic>Position (location)</topic><topic>Sobolev type inner product</topic><topic>Zeros</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castillo, Kenier</creatorcontrib><creatorcontrib>Mello, Mirela V.</creatorcontrib><creatorcontrib>Rafaeli, Fernando R.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied numerical mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castillo, Kenier</au><au>Mello, Mirela V.</au><au>Rafaeli, Fernando R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monotonicity and asymptotics of zeros of Sobolev type orthogonal polynomials: A general case</atitle><jtitle>Applied numerical mathematics</jtitle><date>2012-11</date><risdate>2012</risdate><volume>62</volume><issue>11</issue><spage>1663</spage><epage>1671</epage><pages>1663-1671</pages><issn>0168-9274</issn><eissn>1873-5460</eissn><abstract>We investigate the location, monotonicity, and asymptotics of the zeros of the polynomials orthogonal with respect to the Sobolev type inner product〈p,q〉λ,c,j=∫abp(x)q(x)dμ(x)+λp(j)(c)q(j)(c), where μ is a positive Borel measure, λ⩾0, j∈Z+, and c∉(a,b). We prove that these zeros are monotonic function of the parameter λ and establish their asymptotics when either λ converges to zero or to infinity. The precise location of the extreme zeros is also analyzed.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.apnum.2012.05.006</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-9274 |
ispartof | Applied numerical mathematics, 2012-11, Vol.62 (11), p.1663-1671 |
issn | 0168-9274 1873-5460 |
language | eng |
recordid | cdi_proquest_miscellaneous_1136360666 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Asymptotic behavior Asymptotic properties Infinity Mathematical analysis Mathematical models Monotonicity Orthogonal polynomials Position (location) Sobolev type inner product Zeros |
title | Monotonicity and asymptotics of zeros of Sobolev type orthogonal polynomials: A general case |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T05%3A32%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monotonicity%20and%20asymptotics%20of%20zeros%20of%20Sobolev%20type%20orthogonal%20polynomials:%20A%20general%20case&rft.jtitle=Applied%20numerical%20mathematics&rft.au=Castillo,%20Kenier&rft.date=2012-11&rft.volume=62&rft.issue=11&rft.spage=1663&rft.epage=1671&rft.pages=1663-1671&rft.issn=0168-9274&rft.eissn=1873-5460&rft_id=info:doi/10.1016/j.apnum.2012.05.006&rft_dat=%3Cproquest_cross%3E1136360666%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1136360666&rft_id=info:pmid/&rft_els_id=S0168927412000773&rfr_iscdi=true |