Monotonicity and asymptotics of zeros of Sobolev type orthogonal polynomials: A general case
We investigate the location, monotonicity, and asymptotics of the zeros of the polynomials orthogonal with respect to the Sobolev type inner product〈p,q〉λ,c,j=∫abp(x)q(x)dμ(x)+λp(j)(c)q(j)(c), where μ is a positive Borel measure, λ⩾0, j∈Z+, and c∉(a,b). We prove that these zeros are monotonic functi...
Gespeichert in:
Veröffentlicht in: | Applied numerical mathematics 2012-11, Vol.62 (11), p.1663-1671 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the location, monotonicity, and asymptotics of the zeros of the polynomials orthogonal with respect to the Sobolev type inner product〈p,q〉λ,c,j=∫abp(x)q(x)dμ(x)+λp(j)(c)q(j)(c), where μ is a positive Borel measure, λ⩾0, j∈Z+, and c∉(a,b). We prove that these zeros are monotonic function of the parameter λ and establish their asymptotics when either λ converges to zero or to infinity. The precise location of the extreme zeros is also analyzed. |
---|---|
ISSN: | 0168-9274 1873-5460 |
DOI: | 10.1016/j.apnum.2012.05.006 |